Skip to main content
Log in

Preparation, ion-exchange, and electrochemical behavior of Cs-type manganese oxides with a novel hexagonal-like morphology

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cs-type layered manganese oxide with a novel hexagonal-like morphology (Cs–BirMO) was prepared by a solid-state reaction procedure. The Cs+ extraction and alkali–metal ion insertion reactions were investigated by chemical analyses, x-ray analyses, scanning electron microscopy observation, Fourier transform-infrared spectroscopy, thermogravimetric differential thermal analyses, pH titration, and distribution coefficient (Kd) measurements. A considerable percentage (88%) of Cs+ ions in the interlayer sites were topotactically extracted by acid treatment, accompanied by a slight change of the lattice parameters. Alkali–metal ions could be inserted into the interlayer of the acid-treated sample (H–BirMO), mainly by an ion-exchange mechanism. The pH titration curve of the H–BirMO sample showed a simple monobasic acid toward Li+, Rb+, and Cs+ ions, and dibasic acid behavior toward Na+ and K+ ions. The order of the apparent capacity was K+ > Li+ ≈ Na+ ≈ Rb+ ≈ Cs+ at pH < 6. The Kd study showed the selectivity sequence of K+ > Rb+ > Na+ > Li+ for alkali–metal ions at the range of pH <5; H–BirMO sample showed markedly high selectivity for the adsorption of K+ ions. Preliminary investigations of the electrochemical properties of the Li+-inserted sample Li–BirMO(1M, 6d) showed that the obtained samples had a relatively high discharge capacity of 115 mAh g−1 and excellent layered stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
TABLE I.
FIG. 3
FIG. 4
FIG. 5
TABLE II.
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. K. Mizushima, P.C. Jones, P.J. Wiseman J.B. Goodenough: LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783 1980

    Article  CAS  Google Scholar 

  2. J.R. Dahn, U. Von Sacken, M.R. Jukow H. Al-Janaby: Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc. 138, 2207 1991

    Article  CAS  Google Scholar 

  3. B. Ammundsen J. Paulsen: Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 13, 943 2001

    Article  CAS  Google Scholar 

  4. R. Alcantara, P. Lavela, J.L. Tirado, R. Stoyanova, E. Kuzmanova E. Zhecheva: Lithium-nickel citrate precursors for the preparation of LiNiO2 insertion electrodes. Chem. Mater. 9, 2145 1997

    Article  CAS  Google Scholar 

  5. M-S. Wu, P-C.J. Chiang, J-T. Lee J-C. Lin: Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. B 109, 23279 2005

    Article  CAS  Google Scholar 

  6. Q. Feng, H. Kanoh K. Ooi: Manganese oxide porous crystals. J. Mater. Chem. 9, 319 1999

    Article  CAS  Google Scholar 

  7. Y.F. Shen, R.P. Zerger, R.N. DeGuzman, S.L. Suib, L. McCurdy, D.I. Potter C.L. O’Young: Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science 260, 511 1993

    Article  CAS  Google Scholar 

  8. A.R. Armstrong, N. Dupre, A.J. Paterson, C.P. Grey P.G. Bruce: Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2. Chem. Mater. 16, 3106 2004

    Article  CAS  Google Scholar 

  9. H. Kanoh, W. Tang, Y. Makita K. Ooi: Electrochemical intercalation of alkali–metal ions into birnessite-type manganese oxide in aqueous solution. Langmuir 13, 6845 1997

    Article  CAS  Google Scholar 

  10. F. Leroux, D. Guyomard Y. Piffard: The 2D rancieite-type manganic acid and its alkali-exchanged derivatives: Part I. Chemical characterization and thermal behavior. Solid State Ionics 80, 299 1995

    Article  CAS  Google Scholar 

  11. A.D. Robertson, A.R. Armstrong P.G. Bruce: Layered LixMn1-yCoyO2 intercalation electrodes-influence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380 2001

    Article  CAS  Google Scholar 

  12. A.R. Armstrong P.G. Bruce: Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499 1996

    Article  CAS  Google Scholar 

  13. R. Chen, T. Chirayil, P. Zavalij M.S. Whittingham: The hydrothermal synthesis of sodium manganese oxide and a lithium vanadium oxide. Solid State Ionics 86, 1 1996

    Article  Google Scholar 

  14. Q. Feng, E-H. Sun, K. Yamagisawa N. Yamasaki: Synthesis of birnessite-type sodium manganese oxides by solution reaction and hydrothermal methods. J. Ceram. Soc. Jpn. 105, 564 1997

    Article  CAS  Google Scholar 

  15. D.S. Yang M.K. Wang: Syntheses and characterization of well-crystallized birnessite. Chem. Mater. 13, 2589 2001

    Article  CAS  Google Scholar 

  16. X. Yang, W. Tang, Q. Feng K. Ooi: Single crystal growth of birnessite- and hollandite-type manganese oxides by a flux method. Cryst. Growth Des. 3, 409 2003

    Article  CAS  Google Scholar 

  17. J. Cai, J. Liu S.L. Suib: Preparative parameters and framework dopant effects in the synthesis of layer-structure birnessite by air oxidation. Chem. Mater. 14, 2071 2002

    Article  CAS  Google Scholar 

  18. B.J. Aronson, A.K. Kinser, S. Passerini, W.H. Smyrl A. Stein: Synthesis, characterization, and electrochemical properties of magnesium birnessite and zinc chalcophanite prepared by a low-temperature route. Chem. Mater. 11, 949 1999

    Article  CAS  Google Scholar 

  19. Z-H. Liu, K. Ooi, H. Kanoh, W. Tang T. Tomida: Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 16, 4154 2000

    Article  CAS  Google Scholar 

  20. A-C. Gaillot, D. Flot, V.A. Drits, A. Manceau, M. Burghammer B. Lanson: Structure of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO4: I. Two-layer polytype from 800 °C experiment. Chem. Mater. 15, 4666 2003

    Article  CAS  Google Scholar 

  21. S. Ching, D.J. Petrovay, M.L. Jorgensen S.L. Suib: Sol-gel synthesis of layered birnessite-type manganese oxides. Inorg. Chem. 36, 883 1997

    Article  CAS  Google Scholar 

  22. M. Dollé, S. Patoux M.M. Doeff: Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: 1. Substitution with Co or Ni. Chem. Mater. 17, 1036 2005

    Article  CAS  Google Scholar 

  23. S. Patoux, M. Dollé M.M. Doeff: Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: 2. Substitution with Al. Chem. Mater. 17, 1044 2005

    Article  CAS  Google Scholar 

  24. Z-H. Liu, K. Ooi, H. Kanoh, W. Tang, X. Yang T. Tomida: Synthesis of thermally stable silica-pillared layered manganese oxide by an intercalation/solvothermal reaction. Chem. Mater. 13, 473 2001

    Article  CAS  Google Scholar 

  25. T.A. Eriksson, Y.J. Lee, J. Hollingsworth, J.A. Reimer, E.J. Cairns, X-F. Zhang M.M. Doeff: Influence of substitution on the structure and electrochemistry of layered manganese oxides. Chem. Mater. 15, 4456 2003

    Article  CAS  Google Scholar 

  26. Y. Xu, Q. Feng, K. Kajiyashi, K. Yanagisawa, X. Yang, Y. Makita, S. Kasaishi K. Ooi: Hydrothermal syntheses of layered lithium nickel manganese oxides from mixed layered Ni(OH)2-manganese oxides. Chem. Mater. 14, 3844 2002

    Article  CAS  Google Scholar 

  27. Q. Feng, Y. Xu, K. Kajiyoshi K. Yanagisawa: Hydrothermal soft chemical synthesis of Ni(OH)2-birnessite sandwich layered compound and layered LiNi1/3Mn2/3O2. Chem. Lett. (Jpn.) 30, 1036 2001

    Article  Google Scholar 

  28. Y. Omomo, T. Sasaki, L.Z. Wang M. Watanabe: Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125, 3568 2003

    Article  CAS  Google Scholar 

  29. Japan Industrial Standard (JIS) Japan Industrial Standard Committee, 1969 M8233

    Google Scholar 

  30. JCPDS Nos. 26-0390, 23-1046, 24-734 18-804. International Center for Diffraction Data Newton Square, PA, 2004

  31. J. Luo, Q. Zhang S.L. Suib: Mechanistic and kinetic studies of crystallization of birnessite. Inorg. Chem. 39, 741 2000

    Article  CAS  Google Scholar 

  32. S.H. Kim, S.J. Kim S.M. Oh: Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations. Chem. Mater. 11, 557 1999

    Article  CAS  Google Scholar 

  33. P. Le Goff, N. Baffier, S. Bach, J-P. Pereira-Ramos R. Messina: Structural and electrochemical properties of layered manganese dioxides in relation to their synthesis, classical and sol-gel routes. J. Mater. Chem. 4, 875 1994

    Article  Google Scholar 

  34. J-P. Parant, R. Olazcuga, M. Devalette, C. Fouassier P. Hagenmuller: Synthesis of layered and tunnel layered sodium manganese oxides. J. Solid State Chem. 3, 1 1971

    Article  CAS  Google Scholar 

  35. J. Luo, A. Huang, S.H. Park, S.L. Suib C-L. O’Young: Crystallization of sodium-birnessite and accompanied phase transformation. Chem. Mater. 10, 1561 1998

    Article  CAS  Google Scholar 

  36. K. Ooi, Y. Miyai J. Sakakihara: Mechanism of lithium(1+) insertion in spinel-type manganese oxide: Redox and ion-exchange reactions. Langmuir 7, 1167 1991

    Article  CAS  Google Scholar 

  37. K. Ooi, Y. Miyai, S. Katoh, H. Maeda M. Abe: Topotactic lithium(1+) insertion to λ-manganese dioxide in the aqueous phase. Langmuir 5, 150 1989

    Article  CAS  Google Scholar 

  38. Q. Feng, H. Kanoh, Y. Miyai K. Ooi: Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction/insertion reactions. Chem. Mater. 7, 1226 1995

    Article  CAS  Google Scholar 

  39. Z-H. Liu K. Ooi: Preparation and alkali–metal ion extraction/insertion reactions with nanofibrous manganese oxide having 2 × 4 tunnel structure. Chem. Mater. 15, 3696 2003

    Article  CAS  Google Scholar 

  40. Q. Feng, Y. Miyai, H. Kanoh K. Ooi: Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides: Characterization of redox-type and ion-exchange-type sites. Langmuir 8, 1861 1992

    Article  CAS  Google Scholar 

  41. M. Tsuji S. Komarneni: Selective exchange of divalent transition metal ions in cryptomelane–type manganic acid with tunnel structure. J. Mater. Res. 8, 611 1993

    Article  CAS  Google Scholar 

  42. J.C. Hunter: Preparation of a new crystal form of manganese dioxide: λ-MnO2. J. Solid State Chem. 39, 142 1981

    Article  CAS  Google Scholar 

  43. Y. Kanzaki, A. Taniguchi M. Abe: Mechanism of lithium ion insertion into λ-MnO2. J. Electrochem. Soc. 138, 333 1991

    Article  CAS  Google Scholar 

  44. Q. Feng, H. Kanoh, Y. Miyai K. Ooi: Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chem. Mater. 7, 148 1995

    Article  CAS  Google Scholar 

  45. Y. Miyai, K. Ooi S. Katoh: Preparation and ion-exchange properties of ion-sieve manganese oxide based on Mg2MnO4. J. Colloid Interface Sci. 130, 535 1989

    Article  CAS  Google Scholar 

  46. R.A. Nyguist R.O. Kagel: Infrared Spectra of Inorganic Compounds Academic Press New York and London 1971 3

    Google Scholar 

  47. R.G. Burns V.M. Burns: In Proceedings of the Manganese Dioxide Symposium Vol. 2 edited by B. Schumm, H.M. Joseph, and A. Kozawa Tokyo 1980 97

  48. X.M. Shen A. Clearfield: Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide. J. Solid State Chem. 64, 270 1986

    Article  CAS  Google Scholar 

  49. D.C. Golden, C.C. Chen J.B. Dixon: Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays Clay Miner. 35, 271 1987

    Article  CAS  Google Scholar 

  50. D.C. Golden, C.C. Chen J.B. Dixon: Synthesis of todorokite. Science 231, 717 1986

    Article  CAS  Google Scholar 

  51. R.D. Shannon C.T. Prewitt: Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B 25, 925 1969

    Article  CAS  Google Scholar 

  52. M. Dollé, J. Hollingsworth, T.J. Richardson M.M. Doeff: Investigation of layered intergrowth LixMyMn1–yO2 + z (M = Ni, Co, Al) compounds as positive electrodes for Li-ion batteries. Solid State Ionics 175, 225 2004

    Article  CAS  Google Scholar 

  53. R. Chen, P. Zavalij M.S. Whittingham: Hydrothermal synthesis and characterization of KxMnO2·yH2O. Chem. Mater. 8, 1275 1996

    Article  CAS  Google Scholar 

  54. Y. Lu, M. Wei, Z. Wang, D.G. Evans X. Duan: Characterization of structure and electrochemical properties of lithium manganese oxides for lithium secondary batteries hydrothermally synthesized from δ-KxMnO2. Electrochim. Acta 49, 2361 2004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20471036) and The Key Project Foundation of Science and Technology of Ministry of Education of the People’s Republic of China (106148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Huai Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, ZH., Kang, L., Zhao, M. et al. Preparation, ion-exchange, and electrochemical behavior of Cs-type manganese oxides with a novel hexagonal-like morphology. Journal of Materials Research 22, 2437–2447 (2007). https://doi.org/10.1557/jmr.2007.0302

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0302

Navigation