Skip to main content

Advertisement

Log in

Construction of cobalt sulfide/molybdenum disulfide heterostructure as the anode material for sodium ion batteries

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Molybdenum disulfide has been considered as an ideal candidate anode material for alkali-ion batteries because of its unique layered structure as well as considerable theoretical capacity. However, poor electronic conductivity and large volume expansion in the repeatedly charging/discharging process impede its practical application. In this work, we fabricate a cobalt sulfide/molybdenum disulfide-based anode material with a heterostructure for sodium-ion batteries (SIBs), which can be constructed by combining a one-pot hydrothermal route with a solid-state sulfidation step. Compared with the anodes based on pure cobalt sulfide and pure molybdenum disulfide materials, the cobalt sulfide/molybdenum disulfide-based one displays superior cycling stability (e.g., 510.9 mAh g−1 @1 A g−1 at the 1000th cycle), and an extraordinary rate performance (341 mAh g−1 @10 A g−1). The material characterizations show that the obtained cobalt sulfide/molybdenum disulfide material has abundance mesopores. The kinetics analysis further confirms the decreasing of charge transfer resistance and the increasing of sodium ions diffusion coefficient with the cycling for this material. As a result, the reasonable design of the cobalt sulfide/molybdenum disulfide heterostructure can provide abundant active sites for the storage of sodium ions and facilitate surface capacity-controlling behavior. This work offers useful insights into the utilization of those heterostructured materials for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He Y, Chen G, Zhang X, Zhang L, Yang D, Asghar M, Geng S, Lund P (2020) Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode. Acs Appl Energy Mater 3:4134–4138

    CAS  Google Scholar 

  2. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal G, Ibrahim M, El-Bahy Z, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160

    Google Scholar 

  3. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Ma 4:906–924

    CAS  Google Scholar 

  4. Chen A, Wang C, Ali O, Mahmoud S, Shi Y, Ji Y, Algadi H, El-Bahy S, Huang M, Guo Z, Cui D, Wei H (2022) MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications. Compos Part A-Appl S 163:107174

    CAS  Google Scholar 

  5. Dang C, Mu Q, Xie X, Sun X, Yang X, Zhang Y, Maganti S, Huang M, Jiang Q, Seok I, Du W, Hou C (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Ma 5:606–626

    Google Scholar 

  6. Wang R, Meng Z, Yan X, Tian T, Lei M, Pashameah R, Abo-Dief H, Algadi H, Huang N, Guo Z, Tang H (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222

    Google Scholar 

  7. Ma R, Cui B, Hu D, El-Bahy S, Wang Y, El Azab I, Elnaggar A, Gu H, Mersal G, Huang M, Murugadoss V (2022) Enhanced energy storage of lead-free mixed oxide core double-shell barium strontium zirconate titanate@magnesium aluminate@zinc oxide-boron trioxide-silica ceramic nanocomposites. Adv Compos Hybrid Ma 5:1477–1489

    CAS  Google Scholar 

  8. Hu X, Wu H, Liu S, Gong S, Du Y, Li X, Lu X, Qu J (2022) Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng Sci 17:1–27

    CAS  Google Scholar 

  9. Qiu W, Hao Q, Annamareddy SH, Xu B, Guo Z, Jiang Q (2022) Electric vehicle revolution and implications: ion battery and energy. Eng Sci 20:100–109

    CAS  Google Scholar 

  10. Goodenough J, Park K (2013) The li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    CAS  Google Scholar 

  11. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  12. Zhang Y, Liu L, Zhao L, Hou C, Huang M, Algadi H, Li D, Xia Q, Wang J, Zhou Z, Han X, Long Y, Li Y, Zhang Z, Liu Y (2022) Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Ma 5:2601–2610

    CAS  Google Scholar 

  13. Cao K, Ma Q, Tietz F, Xu B, Yan M, Jiang Y (2021) A robust, highly reversible, mixed conducting sodium metal anode. Sci Bull 66:179–186

    CAS  Google Scholar 

  14. Fang L, Bahlawane N, Sun W, Pan H, Xu B, Yan M, Jiang Y (2021) Conversion-alloying anode materials for sodium ion batteries. Small 17:2101137

    CAS  Google Scholar 

  15. Jiang Y, Hu M, Zhang D, Yuan T, Sun W, Xu B, Yan M (2014) Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5:60–66

    CAS  Google Scholar 

  16. Wang W, Bi H, Li C, Zhang J, Feng J, Wang Y, Huang X, Sun Y, Sun L (2019) Edge-terminated few-layer MoS2 nanoflakes supported on TNAs@C with enhanced electrocatalysis activity for iodine reduction reaction. Mater Today Nano 6:100033

    Google Scholar 

  17. Zhou YL, Liu Y, Zhang M, Han Q, Wang YF, Sun XQ, Zhang XY, Dong CF, Sun JC, Tang ZK, Jiang FY (2022) Rationally designed hierarchical N, P co-doped carbon connected 1T/2H-MoS2 heterostructures with cooperative effect as ultrafast and durable anode materials for efficient sodium storage. Chem Eng J 433(3):133778

    CAS  Google Scholar 

  18. Wang YF, Wang K, Zhang C, Zhu JX, Xu JS, Liu TX (2019) Solvent-exchange strategy toward aqueous dispersible MoS2 nanosheets and their nitrogen-rich carbon sphere nanocomposites for efficient lithium/sodium ion storage. Small 15:1903816

    CAS  Google Scholar 

  19. Pan Q, Zhang Q, Zheng F, Liu Y, Li Y, Ou X, Xiong X, Yang C, Liu M (2018) Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano 12:12578–12586

    CAS  Google Scholar 

  20. Su D, Dou S, Wang G (2015) Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv Energy Mater 5:1401205

    Google Scholar 

  21. Li J, Gao W, Huang L, Jiang Y, Chang X, Sun S, Pan L (2022) In situ formation of few-layered MoS2@N-doped carbon network as high performance anode materials for sodium-ion batteries. Appl Surf Sci 571(1):151307

    CAS  Google Scholar 

  22. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin K, Park H, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J (2020) Roadmap on carbon materials for energy storage and conversion. Chem-Asian J 15:995–1013

    CAS  Google Scholar 

  23. Sarwar M, Xu Z, Yao K, Liu X, Wang Y, Yang J, Huang J (2022) Constructing N-Doped graphene supported MoS2@Ni3S4 for pseudocapacitive sodium-ion storage with high rate and long life. Mater Today Chem 23:100713

    CAS  Google Scholar 

  24. Hao X, Zhang J, Wang J, Zhao B, Qian M, Wang R, Yuan Q, Zhang X, Huang X, Li H, Yu C, Xie J, Wu F, Tan G (2022) Metallothermic-synchronous construction of compact dual-two-dimensional MoS2-graphene composites for high-capacity lithium storage. Nano Energy 103:107850

    CAS  Google Scholar 

  25. Niu F, Bai Z, Mao Y, Zhang S, Yan H, Xu X, Chen J, Wang N (2023) Rational design of MWCNTs@amorphous carbon@MoS2: towards high performance cathode for aqueous zinc-ion batteries. Chem Eng J 453:139933

    CAS  Google Scholar 

  26. Zhang X, Shi H, Liu L, Min C, Liang S, Xu Z, Xue Y, Hong C, Cai Z (2022) Construction of MoS2/Mxene heterostructure on stress-modulated kapok fiber for high-rate sodium-ion batteries. J Colloid Interf Sci 605:472–482

    CAS  Google Scholar 

  27. Cao L, Liang X, Ou X, Yang X, Li Y, Yang C, Lin Z, Liu M (2020) Heterointerface engineering of hierarchical Bi2S3/MoS2 with self-generated rich phase boundaries for superior sodium storage performance. Adv Functi Mater 30:1910732

    CAS  Google Scholar 

  28. Guo C, Zhang W, Liu Y, He J, Yang S, Liu M, Wang Q, Cuo Z (2019) Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv Functi Mater 29:1901925

    Google Scholar 

  29. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu B, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195

    Google Scholar 

  30. Zhang T, Feng Y, Zhang J, He C, Itkis DM, Song J (2020) Ultrahigh-rate sodium-ion battery anode enabled by vertically aligned (1T–2H MoS2)/CoS2 heteronanosheets. Mater Today Nano 12:100089

    Google Scholar 

  31. Su Y, Wu CX, Li H, Chen FJ, Guo Y, Yang L, Xu SL (2020) MoS2 nanoplatelets scaffolded within CoS2 nanobundles as anode nanomaterials for sodium-ion batteries. J Alloy Compd 845:156229

    CAS  Google Scholar 

  32. Liu J, Li D, Yang G, Cai F, Li G (2020) Synthesis of honeycomb-like Co3S4/MoS2 composites with hollow structure as anode materials for high-performance lithium-ion and sodium-ion batteries. J Electron Mater 49:6519–6527

    CAS  Google Scholar 

  33. He Y, Liu C, Peng S, Zhang J, Chen G, Feng Z, Zhao Q, Abudula A, Guan G (2022) Micro-flower-like MoS2-modified Co9S8 heterostructure as anode material for sodium-ion batteries with superior reversibility and rate capacity. J Mater Sci Technol 145:210–220

    Google Scholar 

  34. Wang Y, Kang W, Cao D, Zhang M, Kang Z, Xiao Z, Wang R, Sun D (2018) A yolk-shelled Co9S8/MoS2-CN nanocomposite derived from a metal-organic framework as a high performance anode for sodium ion batteries. J Mater Chem A 6:4776–4782

    CAS  Google Scholar 

  35. He B, Li G, Li J, Wang J, Tong H, Fan Y, Wang W, Sun S, Dang F (2021) MoSe2@CNT core–shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries. Adv Energy Mater 11:2003263

    CAS  Google Scholar 

  36. Guo L, Tan L, Xu A, Li G, Zhang G, Liu R, Wang J, Du Y, Dang F (2022) Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries. Energy Storage Mater 50:96–104

    Google Scholar 

  37. Zhang G, Liu C, Guo L, Liu R, Miao L, Dang F (2022) Electronic “bridge” construction via ag intercalation to diminish catalytic anisotropy for 2D tin diselenide cathode catalyst in lithium–oxygen batteries. Adv Energy Mater 12:2200791

    CAS  Google Scholar 

  38. Qiu Y, Li G, Zhou H, Zhang G, Guo L, Guo Z, Yang R, Fan Y, Wang W, Du Y, Dang F (2023) Highly stable garnet Fe2Mo3O12 cathode boosts the lithium-air battery performance featuring a polyhedral framework and cationic vacancy concentrated surface. Adv Sci 2023:2300482

    Google Scholar 

  39. Zhang G, Li G, Wang J, Tong H, Wang J, Du Y, Sun S, Dang F (2022) 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for li–oxygen batteries. Adv Energy Mater 12:2103910

    CAS  Google Scholar 

  40. Gu Y, Xu Y, Wang Y (2013) Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. Acs Appl Mater Interfaces 5:801–806

    CAS  Google Scholar 

  41. Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Edit 53:12794–12798

    CAS  Google Scholar 

  42. Xuyen N, Ting J (2017) Hybridized 1T/2H MoS2 having controlled 1T concentrations and its use in supercapacitors. Chem-Eur J 23:17348–17355

    Google Scholar 

  43. Wang S, Zhang D, Li B, Zhang C, Du Z, Yin H, Bi X, Yang S (2018) Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv Energy Mater 8:1801345

    Google Scholar 

  44. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Xu B, Algadi H, Pashameah R, Alanazi A, Alzahrani E, Li H, Du W, Guo Z, Hou C (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259

    Google Scholar 

  45. Yang W, Peng D, Kimura H, Zhang X, Sun XQ, Pashameah R, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Ma 5:3146–3157

    CAS  Google Scholar 

  46. Peng S, Han X, Li L, Zhu Z, Cheng F, Srinivansan M, Adams S, Ramakrishna S (2016) Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12:1359–1368

    CAS  Google Scholar 

  47. Zhu X, Jiang X, Liu X, Xiao L, Ai X, Yang H, Cao Y (2017) Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries. Ceram Int 43:9630–9635

    CAS  Google Scholar 

  48. Luo F, Feng X, Zeng L, Lin L, Li X, Kang B, Xiao L, Chen Q, Wei M, Qian Q (2021) In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries. Chem Eng J 404:126430

    CAS  Google Scholar 

  49. Zhou Y, Zhang M, Han Q, Liu Y, Wang Y, Sun X, Zhang X, Dong C, Jiang F (2022) Hierarchical 1 T-MoS2/MoOx@NC microspheres as advanced anode materials for potassium/sodium-ion batteries. Chem Eng J 428(15):131113

    CAS  Google Scholar 

  50. Guo Q, Ma Y, Chen T, Xia Q, Yang M, Xia H, Yu Y (2017) Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 11:12658–12667

    CAS  Google Scholar 

  51. Liu T, Li Y, Hou S, Yang C, Guo Y, Tian S, Zhao L (2020) Building hierarchical microcubes composed of one-dimensional CoSe2@nitrogen-doped carbon for superior sodium ion batteries. Chem-Eur J 26:13716–13724

    CAS  Google Scholar 

  52. Zhao Y, Liu Y, Wang C, Ortega E, Wang X, Xie Y, Shen J, Gao C, Van der Bruggen B (2020) Electric field-based ionic control of selective separation layers. J Mater Chem A 8:4244–4251

    CAS  Google Scholar 

  53. Jiao Y, Mukhopadhyay A, Ma Y, Yang L, Hafez A, Zhu H (2018) Ion Transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv Energy Mater 8:1702779

    Google Scholar 

  54. Wei Q, Gao M, Li Y, Zhang D, Wu S, Chen Z, Sun Y (2018) Directionally assembled MoS2 with significantly expanded interlayer spacing: a superior anode material for high-rate lithium-ion batteries. Mater Chem Frontiers 2:1441–1448

    CAS  Google Scholar 

  55. Hu X, Liu X, Chen K, Wang G, Wang H (2019) Core-shell MOF-derived N-doped yolk-shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries. J Mater Chem A 7:11016–11037

    CAS  Google Scholar 

  56. Ren W, Zhang H, Guan C, Cheng C (2017) Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv Funct Mater 27:1702116

    Google Scholar 

  57. Zhu H, Zhang F, Li J, Tang Y (2018) Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery. Small 14:1703951

    Google Scholar 

  58. Ye W, Wu F, Shi N, Zhou H, Chi Q, Chen W, Du S, Gao P, Li H, Xiong S (2020) Metal-semiconductor phase twinned hierarchical MoS2 nanowires with expanded interlayers for sodium-ion batteries with ultralong cycle life. Small 16:1906607

    CAS  Google Scholar 

  59. Yu J, Li X, Sun Y, Liu X (2018) CoS@sulfur doped onion-like carbon nanocapsules with excellent cycling stability and rate capability for sodium-ion batteries. Ceram Int 44:17113–17117

    CAS  Google Scholar 

  60. Wu Y, Cheng J, Liang Z, Qiu T, Tang Y, Shi J, Gao S, Zhong R, Zou R (2022) Construction of CoS-encapsulated in ultrahigh nitrogen doped carbon nanofibers from energetic metal-organic frameworks for superior sodium storage. Carbon 198:353–363

    CAS  Google Scholar 

  61. Xiang J, Song T (2017) One-pot synthesis of multicomponent (Mo, Co) metal sulfide/carbon nanoboxes as anode materials for improving Na-ion storage. Chem Commun 53:10820–10823

    CAS  Google Scholar 

  62. Bai L, Liang F (2022) Hierarchical MoS2/carbon composites as superior anode for advanced sodium-ion battery. Ionics 28:3341–3345

    CAS  Google Scholar 

  63. Liu Y, Tang C, Sun W, Zhu G, Du A, Zhang H (2022) In-situ conversion growth of carbon-coated MoS2/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries. J Mater Sci Technol 102:8–15

    Google Scholar 

  64. Yang S, Park S, Kim J, Kang Y (2019) A MOF-mediated strategy for constructing human backbone-like CoMoS3@N-doped carbon nanostructures with multiple voids as a superior anode for sodium-ion batteries. J Mater Chem A 7:13751–13761

    CAS  Google Scholar 

  65. Wang X, Wang BQ, Tang YX, Xu BB, Liang C, Yan M, Jiang YZ (2020) Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode. J Mater Chem A 8:3222–3227

    CAS  Google Scholar 

  66. Mu Q, Liu R, Kimura H, Li J, Jiang H, Zhang X, Yu Z, Sun X, Algadi H, Guo Z, Du W, Hou C (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6:23

    CAS  Google Scholar 

  67. Lian X, Xu N, Ma Y, Hu F, Wei H, Chen H, Wu Y, Li L, Li D, Peng S (2021) In-situ formation of Co1-xS hollow polyhedrons anchored on multichannel carbon nanofibers as self-supporting anode for lithium/sodium-ion batteries. Chem Eng J 421:127755

    CAS  Google Scholar 

  68. Cook J, Lin T, Kim H, Siordia A, Dunn B, Tolbert S (2019) Suppression of electrochemically driven phase transitions in nanostructured MoS2 pseudocapacitors probed using operando X-ray diffraction. ACS Nano 13:1223–1231

    CAS  Google Scholar 

  69. Muller G, Cook J, Kim H, Tolbert S, Dunn B (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15:1911–1917

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Shared Facility Center for Science and Technology (SFCST), Hirosaki University, Japan, for TEM-EDX, XRD and SEM-EDX measurements. Liu and Feng gratefully acknowledge China Scholarship Council (CSC), China.

Funding

This work is supported by ZiQoo Chemical Co. Ltd., Japan.

Author information

Authors and Affiliations

Authors

Contributions

Yang He, conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft; Changlin Liu, investigation; Zhengkun Xie, investigation; Pairuzha Xiaokaiti, investigation; Gang Chen, supervision and investigation; Zhongbao Feng, investigation; Yutaka Kasai, investigation; Abuliti Abudula, project administration, supervision and investigation; Guoqing Guan, conceptualization, supervision, validation, writing—review and editing. All authors have read the paper, modified the final version, and agreed on the submission.

Corresponding authors

Correspondence to Abuliti Abudula or Guoqing Guan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1944 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Liu, C., Xie, Z. et al. Construction of cobalt sulfide/molybdenum disulfide heterostructure as the anode material for sodium ion batteries. Adv Compos Hybrid Mater 6, 85 (2023). https://doi.org/10.1007/s42114-023-00661-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00661-0

Keywords

Navigation