Skip to main content
Log in

Oxygen-induced amorphization of metallic titanium by ball milling

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Amorphization of metallic titanium by ball milling was presented. With the introduction of continuous pickup of impurities, hexagonally close-packed (hcp) titanium transformed gradually into an amorphous phase without experiencing any intermediate stage of forming a detectable metastable compound phase. The crystallization temperature of the obtained Ti metal glassy phase is about 640 K. The total concentration of the impurities (oxygen, nitrogen, iron, etc.) in the final product of the milled powders that was obtained after 60 h of milling was 10.85 at.%. The amorphization of metallic titanium may account for the combined effects of the pickup oxygen impurity in small amount and the Gibbs–Thompson effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
TABLE I.

Similar content being viewed by others

References

  1. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 2001

    Article  CAS  Google Scholar 

  2. M. Sherif El-Eskandarany: Mechanical Alloying for Fabrication of Advanced Engineering Materials, edited by M.S. El-Eskandarany Noyes Publications/William Andrew Publishing, New York 2001 1

  3. A. Calka: Formation of titanium and zirconium nitrides by mechanical alloying. Appl. Phys. Lett. 59, 1568 1991

    Article  CAS  Google Scholar 

  4. K. Aoki, A. Memezawa T. Masumoto: Nitrogen-induced amorphization of Ti–Zr powders during mechanical alloying. Appl. Phys. Lett. 61, 1037 1992

    Article  CAS  Google Scholar 

  5. C.C. Koch, O.B. Cavin, C.G. McKamey J.O. Scarbroughy: Preparation of “amorphous” Ni60Nb40 by mechanical alloying. Appl. Phys. Lett. 43, 1017 1983

    Article  CAS  Google Scholar 

  6. M.S. Kim C.C. Koch: Structural development during mechanical alloying of crystalline niobium and tin powders. J. Appl. Phys. 62, 3450 1987

    Article  CAS  Google Scholar 

  7. A. Kübler, J. Eckert, A. Gebert L. Schultz: Influence of oxygen on the viscosity of Zr-Al-Cu-Ni metallic glasses in the undercooled liquid region. J. Appl. Phys. 83, 3438 1998

    Article  Google Scholar 

  8. I. Lucks, P. Lamparter E.J. Mittemeijer: Uptake of iron, oxygen and nitrogen in molybdenum during ball milling. Acta Mater. 49, 2419 2001

    Article  CAS  Google Scholar 

  9. I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart H-J. Fecht: Formation of face-centered-cubic titanium by mechanical attrition. J. Appl. Phys. 93, 1520 2003

    Article  CAS  Google Scholar 

  10. M. Tokita: Trends in advanced SPS spark plasma sintering system and technology. J. Soc. Powder Technol. Jpn. 30, 790 1993

    Article  CAS  Google Scholar 

  11. Y.H. Zhao, H.W. Sheng K. Lu: Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition. Acta Mater. 49, 365 2001

    Article  CAS  Google Scholar 

  12. P.P. Chattopadhyay, P.M.G. Nambissan, S.K. Pabi I. Manna: Polymorphic bcc to fcc transformation of nanocrystalline niobium studied by positron annihilation. Phys. Rev. B 63, 054107 2001

    Article  Google Scholar 

  13. G. He, J. Eckert M. Hagiwara: Glass-forming ability and crystallization behavior of Ti–Cu–Ni–Sn–M (M = Zr, Mo, and Ta) metallic glasses. J. Appl. Phys. 95, 1816 2004

    Article  CAS  Google Scholar 

  14. L.C. Zhang, J. Xu E. Ma: Mechanically alloyed amorphous Ti50(Cu4.5Ni4.5)44-XAlXSi4B2 alloy with supercooled liquid region. J. Mater. Res. 17, 1743 2002

    Article  CAS  Google Scholar 

  15. T. Hattori, H. Saitoh, H. Kaneko, Y. Okajima, K. Aoki W. Utsumi: Does bulk metallic glass of elemental Zr and Ti exist? Phys. Rev. Lett. 96, 255504 2006

    Article  Google Scholar 

  16. C. Yang, R.P. Liu, Z.J. Zhan, L.L. Sun, J. Zhang, Z.Z. Gong W.K. Wang: Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching. Appl. Phys. Lett. 87, 051904 2005

    Article  Google Scholar 

  17. Binary Alloy Phase Diagrams, edited by S. Nagasaki and M. Hirabayashi in Japanese, AGNE Gijutsu Center, Co., Ltd., Tokyo, Japan 2002 translated into Chinese by A.S. Liu Metallurgical Industry Press, Beijing, China 2004 160

    Google Scholar 

  18. Binary Alloy Phase Diagrams, translated into Chinese by A.S. Liu (Ref. 17) 315

  19. E. Hellstern L. Schultz: Amorphization of transition metal Zr alloys by mechanical alloying. Appl. Phys. Lett. 48, 124 1986

    Article  CAS  Google Scholar 

  20. K. Sakurai, Y. Yamada, M. Ito, C.H. Lee, T. Fukunaga U. Mizutani: Observation of solid-state amorphization in the immiscible system Cu-Ta. Appl. Phys. Lett. 57, 2660 1990

    Article  CAS  Google Scholar 

  21. Binary Alloy Phase Diagrams, translated into Chinese by A.S. Liu (Ref. 17) 320

  22. JCPDS File No. 44-1294

  23. JCPDS File Nos. 72-1806, 73-1117, 73-1583, and 76-1644, 1998

  24. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000

    Article  CAS  Google Scholar 

  25. R. Schultz, M. Trudeau, J.Y. Huot A.V. Neste: Interdiffusion during the formation of amorphous alloys by mechanical alloying. Phys. Rev. Lett. 62, 2849 1989

    Article  Google Scholar 

  26. W. Mo, G.Z. Deng F.C. Luo: Titanium Metallurgy Metallurgical Industry Press, Beijing, China 2004 36

    Google Scholar 

  27. R.B. Schwarz C.C. Koch: Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics. Appl. Phys. Lett. 49, 146 1986

    Article  CAS  Google Scholar 

  28. C. Nagel, K. Rätzke, E. Schmidtke, J. Wolff, U. Geyer F. Faupel: Free-volume changes in the bulk metallic glass Zr46.7Ti8.3Cu7.5Ni10Be27.5 and the undercooled liquid. Phys. Rev. B. 57, 10224 1998

    Article  CAS  Google Scholar 

  29. L. Kaufman: Phase Stability in Metals and Alloys, edited by P.S. Rudman, J. Stringer, and R.I. Jaffe McGraw-Hill, London, British 1966 125

  30. Y. Wang, Y.Z. Fang, T. Kikegawa, C. Lathe, K. Saksl, H. Franz, J.R. Schneider, L. Gerward, F.M. Wu, J.F. Liu J.Z. Jiang: Amorphouslike diffraction pattern in solid metallic titanium. Phys. Rev. Lett. 95, 155501 2005

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Science Fund of China for Distinguished Young Scholar (No. 50325516), the Science and Technology Program of Guangdong Province (No. 59872024), China Postdoctoral Science Foundation (No. 20060390198), and Postdoctoral Innovation Foundation of South China University of Technology (No. 05243). The authors are very grateful to Prof. S. Li, Dr. L.Z. Ouyang, and Prof. Y.Z. Liu for their helpful discussions and to Miss X.P. Zeng for her technical assistances in the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yang, C., Chen, W. et al. Oxygen-induced amorphization of metallic titanium by ball milling. Journal of Materials Research 22, 1927–1932 (2007). https://doi.org/10.1557/jmr.2007.0243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0243

Navigation