Skip to main content
Log in

Solvent and plasma gas influence on the synthesis of Y2O3 nanoparticles by suspension plasma spraying

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Suspension plasma spraying was used to synthesize Y2O3 nanoparticles. The Y2O3 starting material was first dispersed in a solvent to form a suspension and then injected axially into the plume of an inductive radio frequency plasma. It was found that the as-sprayed Y2O3 particles had a size distribution from nano to micron scale and various morphological features, which varied with processing conditions as well as solvent and plasma gas type. In comparison with water, organic solvents led to a higher productivity and smaller particle size, whereas water introduced impurities such as Y2O2C2, which is isotypic to La2O2C2. Introduction of oxygen as an auxiliary plasma gas was an effective way to eliminate this impurity. In addition, complete combustion of the organic solvent and recombination of oxygen atoms above 4000 K also elevated the heat treatment degree of Y2O3. As a result, application of O2 with an organic solvent resulted in an even smaller mean particle size and narrower size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.R. Ronda, T. Jüstel, and H. Nikol: Rare earth phosphors: Fundamentals and applications. J. Alloys Compd. 275–277, 669 (1998).

    Article  Google Scholar 

  2. O. Forlani and S. Rossini: Rare earths as catalysts for the oxidative coupling of methane to ethylene. Mater. Chem. Phys. 31, 155 (1992).

    Article  CAS  Google Scholar 

  3. A.I.Y Tok, L.H. Luo, F.Y.C Boey, and S.H. Ng: Consolidation and properties of Gd0.1Ce0.9O1.95 nano-particles for SOFC electrolytes. J. Mater. Res. 21, 119 (2006).

    Article  CAS  Google Scholar 

  4. H. Kishi, Y. Mizuno, and H. Chazono: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1 (2003).

    Article  CAS  Google Scholar 

  5. C.C. Koch: Nanostructured Materials—Processing, Properties and Potential Applications (William Andrew Publishing / Noyes, New York, 2002), p. 3.

    Google Scholar 

  6. Y.M. Miao, Q.L. Zhang, H. Yang, and H.P. Wang: Low-temperature synthesis of nano-crystalline magnesium titanate materials by the sol-gel method. Mater. Sci. Eng., B 128, 103 (2006).

    Article  CAS  Google Scholar 

  7. F. Wang, X.P. Fan, D.B. Pi, and M.Q. Wang: Hydrothermal synthesis of Nd3+-doped orthoborate nanoparticles that emit in the near-infrared. J. Solid State Chem. 177, 3346 (2004).

    Article  CAS  Google Scholar 

  8. R.B. Zhang and L. Gao: Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles. Mater. Res. Bull. 37, 1659 (2002).

    Article  CAS  Google Scholar 

  9. G.F. Gaertner and P.F. Miquel: Particle generation by laser ablation from solid targets in gas flows. Nanostruct. Mater. 4, 559 (1993).

    Article  Google Scholar 

  10. R. Jossen, R. Mueller, S.E. Pratsinis, M. Watson, and M.K. Akhtar: Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles. Nanotechnology 16, 609 (2005).

    Article  CAS  Google Scholar 

  11. R. Kumar, P. Cheang, and K.A. Khor: Radio frequency (RF) suspension plasma sprayed ultra-fine hydroxyapatite (HA)/zirconia composite powders. Biomaterials 24, 2611 (2003).

    Article  CAS  Google Scholar 

  12. T. Ishigaki, S.M. Oh, J.G. Li, and D.W. Park: Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma. Sci. Technol. Adv. Mater. 6, 111 (2005).

    Article  CAS  Google Scholar 

  13. M. Sugasawa, N. Kikukawa, N. Ishikawa, N. Kayano, and T. Kimura: Synthesis of Y–Fe–O ultrafine particles using inductively coupled plasma. J. Aerosol Sci. 29, (5/6), 675 (1998).

    Article  Google Scholar 

  14. F. Gitzhofer, E. Bouyer, and M.I. Boulos: Suspension plasma spray. U.S. Patent No. 5 609 921 (3 November 1997).

    Google Scholar 

  15. E. Bouyer, F. Gitzhofer, and M.I. Boulos: Suspension plasma spraying for hydroxyapatite powder preparation by RF plasma. IEEE T. Plasma Sci. 25, 1066 (1997).

    Article  CAS  Google Scholar 

  16. M. Vardelle, A. Vardelle, P. Fauchais, K.I. Li, B. Dussoubs, and N.J. Themelis: Controlling particle injection behavior relationship in plasma spraying. J. Therm. Spray Tech. 10, 267 (2001).

    Article  CAS  Google Scholar 

  17. National Institute of Standards & Technology, Standard Reference Material 660a, Certificate Issue Date: 13 September 2000.

  18. R.W. Cheary and A.A. Coelho: A fundamental parameter approach to x-ray line profile fitting. J. Appl. Crystallogr. 25, 109 (1992).

    Article  CAS  Google Scholar 

  19. R. Ye, P. Proulx, and M.I. Boulos: Turbulence phenomena in the radio frequency induction plasma torch. Int. J. Heat Mass Transfer 42, 1585 (1999).

    Article  Google Scholar 

  20. PDF-2 Database, International Center of Diffraction Data, Release 1998.

  21. A.D. Butherus and H.A. Eick: Preparation, characterization and some thermodynamic properties of lanthanum oxide carbide, La2O2C2. J. Inorg. Nucl. Chem. 35, 1925 (1973).

    Article  CAS  Google Scholar 

  22. R.L. Seiver and H.A. Eick: The crystal structure of dilanthanum dioxide dicarbide, La2O2C2. J. Less-Comm. Mater. 44, 1 (1976).

    Article  CAS  Google Scholar 

  23. X.L. Sun, A.I.F Tok, R. Huebner, and F.Y.C Boey: Phase transformation of ultrafine rare earth oxide powders synthesized by radio frequency plasma spraying. J. Eur. Ceram. Soc. 27, 125 (2007).

    Article  CAS  Google Scholar 

  24. M.T. Swihart: Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid In. 8, 127 (2003).

    Article  CAS  Google Scholar 

  25. A.B. Murphy and C.J. Arundell: Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chem. Plasma. 451, 14 (1994).

    Google Scholar 

  26. G. Baldinozzi, J.F. Berar, and G. Calvarin: Rietveld refinement of two-phase Zr-doped Y2O3. Mater. Sci. Forum 278, 680 (1998).

    Article  Google Scholar 

  27. P. Fauchais: Understanding plasma spraying. J. Phys. D: Appl. Phys. 37, 86 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Y. Tok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X.L., Tok, A.I.Y., Boey, F.Y.C. et al. Solvent and plasma gas influence on the synthesis of Y2O3 nanoparticles by suspension plasma spraying. Journal of Materials Research 22, 1306–1313 (2007). https://doi.org/10.1557/jmr.2007.0161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0161

Navigation