Skip to main content
Log in

Effects of Feedstock Decomposition and Evaporation on the Composition of Suspension Plasma-Sprayed Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Emerging new applications and growing demands of plasma-sprayed coatings have initiated the development of new plasma spray processes. One of them is suspension plasma spraying (SPS). The use of liquid feedstock such as suspensions yields higher flexibility compared to the conventional atmospheric plasma spray processes as even submicron-to nano-sized particles can be processed. This allows achieving particular microstructural features, e.g., porous segmented or columnar-structured thermal barrier coatings. To exploit the potentials of such novel plasma spray processes, the plasma-feedstock interaction must be understood better. In this study, decomposition and evaporation of feedstock material during SPS were investigated, since particular difficulties can occur with respect to stoichiometry and phase composition of the deposits. Plasma conditions were analyzed by optical emission spectroscopy (OES). Experimental results are given, namely for gadolinium zirconate and for lanthanum strontium cobalt ferrite deposition. Moreover, the applied OES approach is validated by comparison with the simpler actinometry method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239

    Article  Google Scholar 

  2. A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Review on New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20, p 677-695

    Article  Google Scholar 

  3. P. Fauchais, M. Vardelle, S. Goutier, and A. Vardelle, Key Challenges and Opportunities in Suspension and Solution Plasma Spraying, Plasma Chem. Plasma Process., 2014, doi:10.1007/s11090-014-9594-5

    Google Scholar 

  4. H. Kaßner, R. Vaßen, and D. Stöver, Study on Instant Droplet and Particle Stages During Suspension Plasma Spraying (SPS), Surf. Coat. Technol., 2008, 202, p 4355-4361

    Article  Google Scholar 

  5. H. Kaßner, “Theoretische und experimentelle Untersuchungen zum Plasmaspritzen mit nano-skaligen Suspensionen,” Ph.D. Thesis (in German), Ruhr Universität Bochum, Germany, 2009

  6. G. Mauer, N. Schlegel, A. Guignard, M.O. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Plasma Spraying of Ceramics with Particular Difficulties in Processing, J. Therm. Spray Technol., 2015, 24(1-2), p 30-37

    Google Scholar 

  7. O. Büchler, J.M. Serra, W.A. Meulenberg, D. Sebold, and H.P. Buchkremer, Preparation and Properties of Thin LSFC Perovskitic Membranes Supported on Tailored Ceramic Substrates, Solid State Ion., 2007, 178, p 91-99

    Article  Google Scholar 

  8. J.L. Margrave, Ed., The Characterization of High Temperature Vapors, Wiley, New York, NY, 1967

    Google Scholar 

  9. G.V. Samsonov, Ed., The Oxide Handbook, 2nd ed., IFI/Plenum, New York, NY, 1986

    Google Scholar 

  10. J. Harris and O. Kesler, Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2010, 19, p 328-335

    Article  Google Scholar 

  11. N.S. Jacobson, Thermodynamic Properties of Some Metal Oxide-Zirconia Systems, NASA Technical Memorandum 102351, Lewis Research Center, Cleveland, OH, 1989

    Google Scholar 

  12. X.Q. Cao, R. Vaßen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc, 2001, 200(84), p 2086-2090

    Google Scholar 

  13. G. Mauer, D. Sebold, R. Vaßen, and D. Stöver, Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics, J. Therm. Spray Technol., 2012, 21, p 363-371

    Article  Google Scholar 

  14. C. Wang, Y. Wang, L. Wang, G. Hao, X. Sun, F. Shan, and Z. Zou, Nanocomposite Lanthanum Zirconate Thermal Barrier Coating Deposited by Suspension Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(7), p 1030-1036

    Article  Google Scholar 

  15. E. Bakan, D.E. Mack, G. Mauer, and R. Vaßen, Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure and Thermal Cycling Behavior, J. Am. Ceram. Soc., 2014, 97(12), p 4045-4051

    Article  Google Scholar 

  16. E. Bakan, D.E. Mack, G. Mauer, R. Mücke, and R. Vaßen, Influence of Processing on Plasma-Sprayed Gd2Z2O7 Microstructure and Lifetime of Gd2Z2O7/YSZ Double Layer Thermal Barrier Coatings, J. Am. Ceram. Soc., 2014, 98, submitted

  17. J.W. Coburn and M. Chen, Optical Emission Spectroscopy of Reactive Plasmas: A Method for Correlating Emission Intensities to Reactive Particle Density, J. Appl. Phys., 1980, 51(6), p 3134-3136

    Article  Google Scholar 

  18. J. Conway, S. Kechkar, N. O’Connor, C. Gaman, M.M. Turner, and S. Daniels, Use of Particle-in-cell Simulations to Improve the Actinometry Technique for Determination of Absolute Atomic Oxygen Density, Plasma Sources Sci. Technol., 2013, 22, p 045004

    Article  Google Scholar 

  19. G. Mauer and R. Vaßen, Plasma Spray-PVD: Plasma Characterization and Impact on Coating Properties, J. Phys., 2012, 406, p 012005

    Google Scholar 

  20. N.M. Temme, Voigt Function, NIST Handbook of Mathematical Functions, F.W.J. Olver, D.M. Lozier, R.F. Boisvert, and C.W. Clark, Ed., Cambridge University Press, Cambridge, 2009,

    Google Scholar 

  21. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team (2014), NIST Atomic Spectra Database (version 5.2), [Online]. Available: http://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD.

  22. G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Process Diagnostics in Suspension Plasma Spraying, Surf. Coat. Technol., 2010, 205(4), p 961-966

    Article  Google Scholar 

  23. S. Kirner, K. Hartz-Behrend, G. Forster, J.-L. Marqués, J. Schein, M. Erne, J. Prehm, K. Möhwald, and F.-W. Bach, Tomographic Investigation of the Injection Conditions in the Case of Suspension Plasma Spraying, Therm. Spray Bull., 2010, 3(2), p 116-122

    Google Scholar 

  24. A. Guignard, “Development of thermal spray processes with liquid feedstocks,” Ph.D. Thesis, Ruhr Universität Bochum, Forschungszentrum Jülich, 2012

Download references

Acknowledgments

The authors gratefully acknowledge the SEM work by Dr. Doris Sebold and the XRD analyses by Dr. Yoo Jung Sohn, both Forschungszentrum Jülich, IEK-1. The chemical analyses were performed by Forschungszentrum Jülich, ZEA-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauer, G., Schlegel, N., Guignard, A. et al. Effects of Feedstock Decomposition and Evaporation on the Composition of Suspension Plasma-Sprayed Coatings. J Therm Spray Tech 24, 1187–1194 (2015). https://doi.org/10.1007/s11666-015-0250-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0250-2

Keywords

Navigation