Skip to main content
Log in

The effects of tensile plastic deformation on the hardness and Young’s modulus of a bulk nanocrystalline alloy studied by nanoindentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A bulk nanocrystalline (nc) Ni–Fe alloy was subjected to tensile deformation, which leads to grain growth. The nanoindentation study indicates that the hardness, H, and Young’s modulus, E, of the nc alloy before and after tensile deformation did not show a clear indentation-rate effect. However, the tensile deformation results in a decrease in the E values of about 15%, which might be attributed to the grain rotation, leading to texture development during the stress-induced grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  2. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).

    Article  CAS  Google Scholar 

  3. T.G. Nieh and J. Wadsworth: Hall-Petch relation in nanocrystalline solids. Scripta Metall. Mater. 25, 955 (1991).

    Article  CAS  Google Scholar 

  4. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).

    Article  Google Scholar 

  5. H. Van Swygenhoven and P.M. Derlet: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B: Condens. Matter 64, 224105 (2001).

    Article  Google Scholar 

  6. D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, and H. Gleiter: Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53, 1 (2005).

    Article  CAS  Google Scholar 

  7. G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia: Strength softening and stress relaxation of nanostructured materials. Metall. Trans. A 36, 2641 (2005).

    Article  Google Scholar 

  8. C.A. Schuh, T.G. Nieh, and H. Iwasaki: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).

    Article  CAS  Google Scholar 

  9. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).

    Article  CAS  Google Scholar 

  10. F.Q. Yang, W.W. Du, and K. Okazaki: Effect of cold rolling on the indentation deformation of AA6061 aluminum alloy. J. Mater. Res. 20, 1172 (2005).

    Article  CAS  Google Scholar 

  11. K.J. Van Vliet, S. Tsikata, and S. Suresh: Model experiments for direct visualization of grain boundary deformation in nanocrystalline metals. Appl. Phys. Lett. 83, 1441 (2003).

    Article  Google Scholar 

  12. Y.M. Wang, A.M. Hodge, J. Biener, A.V. Hamza, D.E. Barnes, K. Liu, and T.G. Nieh: Deformation twinning during nanoindentation of nanocrystalline Ta. Appl. Phys. Lett. 86, 101915 (2005).

    Article  Google Scholar 

  13. M. Zhang, B. Yang, J. Chu, and T.G. Nieh: Hardness enhancement in nanocrystalline tantalum thin films. Scripta Mater. 54, 1227 (2006).

    Article  CAS  Google Scholar 

  14. W.H. Jiang and M. Atzmon: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).

    Article  CAS  Google Scholar 

  15. K. Zhang, J.R. Weertman, and J.A. Eastman: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).

    Article  CAS  Google Scholar 

  16. M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).

    Article  CAS  Google Scholar 

  17. G.J. Fan, Y.D. Wang, L.F. Fu, H. Choo, P.K. Liaw, Y. Ren, and N.D. Browning: Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation. Appl. Phys. Lett. 88, 171914 (2006).

    Article  Google Scholar 

  18. X.Z. Liao, A.R. Kilmametov, R.Z. Valiev, H.S. Gao, X.D. Li, A.K. Mukherjee, J.F. Bingert, and Y.T. Zhu: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88, 021909 (2006).

    Article  Google Scholar 

  19. D.S. Gianola, S.V. Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).

    Article  CAS  Google Scholar 

  20. G.J. Fan, L.F. Fu, D.C. Qiao, H. Choo, P.K. Liaw, and N.D. Browning: Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation. Scripta Mater. 54, 2137 (2006).

    Article  CAS  Google Scholar 

  21. G.J. Fan, L.F. Fu, H. Choo, P.K. Liaw, and N.D. Browning: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys. Acta Mater. 54, 4781 (2006).

    Article  CAS  Google Scholar 

  22. G.J. Fan, L.F. Fu, Y.D. Wang, Y. Ren, H. Choo, P.K. Liaw, G.Y. Wang, and N.D. Browning: Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy x-ray diffraction technique. Appl. Phys. Lett. 89, 101918 (2006).

    Article  Google Scholar 

  23. J. Chen, Y.N. Shi, and K. Lu: Strain rate sensitivity of a nanocrystalline Cu-Ni-P alloy. J. Mater. Res. 20, 2955 (2005).

    Article  CAS  Google Scholar 

  24. D. Pan, T.G. Nieh, and M.W. Chen: Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl. Phys. Lett. 88, 161922 (2006).

    Article  Google Scholar 

  25. R. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials4th ed. (Wiley, New York, NY, 1996) p. 6.

    Google Scholar 

  26. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker: Microsample tensile testing of nanocrystalline metals. Philos. Mag. A 80, 1017 (2000).

    Article  CAS  Google Scholar 

  27. P. Sanders, C.P. Youngdahl, and J.R. Weertman: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng., A 234–236, 77 (1997).

    Article  Google Scholar 

  28. H. Huang and F. Spaepen: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).

    Article  CAS  Google Scholar 

  29. Y. Zhou, U. Erb, K.T. Aust, and G. Palumbo: Young’s modulus in nanostructured metals. Z. Metallkd. 94, 1157 (2003).

    Article  CAS  Google Scholar 

  30. X.H. Zeng and T. Ericsson: Anisotropy of elastic properties in various aluminium-lithium sheet alloys. Acta Mater. 44, 1801 (1996).

    Article  CAS  Google Scholar 

  31. Y.B. Park, D.N. Lee, and G. Gottstein: The evolution of recrystallization textures in body centred cubic metals. Acta Mater. 10, 3371 (1998).

    Article  Google Scholar 

  32. D.C. Hurley, R.H. Geiss, M. Kopycinska-Muller, J. Muller, D.T. Read, J.E. Wright, N.M. Jennett, and A.S. Maxwell: Anisotropic elastic properties of nanocrystalline nickel thin films. J. Mater. Res. 20, 1186 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, G.J., Jiang, W.H., Liu, F.X. et al. The effects of tensile plastic deformation on the hardness and Young’s modulus of a bulk nanocrystalline alloy studied by nanoindentation. Journal of Materials Research 22, 1235–1239 (2007). https://doi.org/10.1557/jmr.2007.0147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0147

Navigation