Skip to main content
Log in

Electrical resistance of Sn–Ag–Cu ball grid array packages with Sn–Zn–Bi addition jointed at 240 °C

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sn–8Zn–3Bi solder paste and Sn–3.2Ag–0.5Cu solder balls were reflowed simultaneously at 240 °C on Cu/Ni/Au metallized ball grid array substrates. The joints without Sn–Zn–Bi addition (only Sn–Ag–Cu) were studied as a control system. Electrical resistance was measured after multiple reflows and aging. The electrical resistance of the joint (R1) consisted of three parts: the solder bulk (Rsolder bulk, upper solder highly beyond the mask), interfacial solder/intermetallic compound (Rsolder/IMC), and the substrate (Rsubstrate). R1 increased with reflows and aging time. Rsolder/IMC, rather than Rsolder bulk and Rsubstrate, seemed to increase with reflows and aging time. The increase of R1 was ascribed to the Rsolder/IMC rises. Rsubstrate was the major contribution to R1. However Rsolder/IMC dominated the increase of R1 with reflows and aging. R1 of Sn–Zn–Bi/Sn–Ag–Cu samples were higher than that of Sn–Ag–Cu samples in various tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Huang, S.W.R Lee, C.C. Yan, and S. Hui: Characterization and analysis on the solder ball shear testing conditions, in Electronic Components and Technology Conference, 2001 Proceedings, pp.1065–1071.

    Google Scholar 

  2. Y.C. Chan, P.L. Tu, C.W. Tang, K.C. Hung, and J.K. Lai: Reliability studies of μBGA solder joints—Effect of Ni–Sn intermetallic compound. IEEE Trans. Adv. Packag. 24, 25 (2001).

    Article  CAS  Google Scholar 

  3. T. Sugizaki, H. Nakao, T. Kimura, and T. Watanabe: BGA jointing property of Sn–8.8 mass% Zn and Sn–8.0 mass% Zn–3.0 mass% Bi solder on electroless nickel-phosphorus/immersion gold plated substrates. Mater. Trans. 44, 1790 (2003).

    Article  CAS  Google Scholar 

  4. C.B. Lee, S.B. Jung, Y.E. Shin, and C.C. Shur: Effect of isothermal aging on ball shear strength in BGA joints with Sn–3.5Ag–0.75Cu solder. Mater. Trans. 43, 1858 (2002).

    Article  CAS  Google Scholar 

  5. C.B. Lee, I.Y. Lee, S.B. Jung, and C.C. Shur: Effect of surface finishes on ball shear strength in BGA joints with Sn–3.5 mass% Ag solder. Mater. Trans. 43, 751 (2002).

    Article  CAS  Google Scholar 

  6. K. Uenishi, Y. Kohara, S. Sakatani, T. Saeki, K.F. Kobayashi, and M. Yamamoto: Melting and joining behavior of Sn/Ag and Sn–Ag/ Sn–Bi plating on Cu core ball. Mater. Trans. 43, 1833 (2002).

    Article  CAS  Google Scholar 

  7. M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi, and K.F. Kobayashi: Mechanical strength and microstructure of BGA joints using lead-free solders. Mater. Trans. 43, 1802 (2002).

    Article  CAS  Google Scholar 

  8. M. Amagai, M. Watanabe, M. Omiya, K. Kishimoto, and T. Shibuya: Mechanical characterization of Sn–Ag-based lead-free solders. Microelectron. Reliab. 42, 951 (2002).

    Article  Google Scholar 

  9. A. Hirose, T. Fujii, T. Imamura, and K.F. Kobayashi: Influence of interfacial reaction on reliability of QFP joints with Sn–Ag based Pb free solders. Mater. Trans. 42, 794 (2001).

    Article  CAS  Google Scholar 

  10. R.A. Islam, B.Y. Wu, M.O. Alam, Y.C. Chan, and W. Jillek: Investigations on microhardness of Sn–Zn based lead-free solder alloys as replacement of Sn–Pb solder. J. Alloys Compd. 392, 149 (2005).

    Article  CAS  Google Scholar 

  11. J. Wu and M.G. Pecht: Contact resistance and fretting corrosion of lead-free alloy coated electrical contacts, in International IEEE Conference on Asian Green Electronics (AGEC) (2004), pp.127–135.

    Google Scholar 

  12. Y. Chonan, T. Komiyama, J. Onuki, R. Urao, T. Kimura, and T. Nagano: Influence of P content in electroless plated Ni–P alloy film on interfacial structures and strength between Sn–Zn solder and plated Au/Ni–P alloy film. Mater. Trans. 43(8), 1887 (2002).

    Article  CAS  Google Scholar 

  13. C.M. Chuang, P.C. Shih, and K.L. Lin: Mechanical strength of Sn–3.5Ag-based solders and related bondings. J. Electron. Mater. 33, 1 (2004).

    Article  CAS  Google Scholar 

  14. J.W. Choi, H.S. Cha, and T.S. Oh: Mechanical properties and shear strength of Sn–3.5Ag–Bi solder alloys. Mater. Trans. 43, 1864 (2002).

    Article  CAS  Google Scholar 

  15. Y.S. Kim, K.S. Kim, C.H. Hwang, and K. Suganuma: Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys. J. Alloys Compd. 352, 237 (2003).

    Article  CAS  Google Scholar 

  16. H. Shimokawa, T. Soga, and K. Serizawa: Mechanical properties and microstructure of tin-silver-bismuth lead-free solder. Mater. Trans. 43, 1808 (2002).

    Article  CAS  Google Scholar 

  17. Y. Miyazawa and T. Ariga: Influences of aging treatment on microstructure and hardness of Sn–(Ag, Bi, Zn) eutectic solder alloys. Mater. Trans. 42, 776 (2001).

    Article  CAS  Google Scholar 

  18. P. C. Shih and K. L. Lin: Interfacial microstructure and shear behavior of Sn–Ag–Cu solder balls joined with Sn–Zn–Bi paste J. Alloys Compd. 422, 153 (2006).

    Article  CAS  Google Scholar 

  19. C.N. Liao and C.T. Wei: Effect of intermetallic compound formation on electrical properties of Cu/Sn interface during thermal treatment. J. Electron. Mater. 33, 1137 (2004).

    Article  CAS  Google Scholar 

  20. B.A. Cook, I.E. Anderson, J.L. Harringa, and R.L. Terpstra: Effect of heat treatment on the electrical resistivity of near-eutectic Sn–Ag–Cu Pb-free solder alloys. J. Electron. Mater. 31, 1190 (2002).

    Article  CAS  Google Scholar 

  21. S.K. Kang, W.K. Choi, M.J. Yim, and D.Y. Shih: Studies of the mechanical and electrical properties of lead-free solder joints. J. Electron. Mater. 31, 1292 (2002).

    Article  CAS  Google Scholar 

  22. J.W. Yoon, S.W. Kim, J.M. Koo, D.G. Kim, and S.B. Jung: Reliability investigation and interfacial reaction of ball-grid-array packages using the lead-free Sn–Cu solder. J. Electron. Mater. 33, 1190 (2004).

    Article  CAS  Google Scholar 

  23. S.W. Kim, J.W. Yoon, and S.B. Jung: Interfacial reactions and shear strengths between Sn–Ag-based Pb-free solder balls and Au/EN/Cu metallization. J. Electron. Mater. 33, 1182 (2004).

    Article  CAS  Google Scholar 

  24. G. Ghosh: Interfacial reaction between multicomponent lead-free solders and Ag, Cu, Ni and Pd substrates. J. Electron. Mater. 33, 1080 (2004).

    Article  CAS  Google Scholar 

  25. Y.L. Lin, W.C. Luo, Y.H. Lin, C.E. Ho, and C.R. Kao: Effects of the gold thickness of the surface finish on the interfacial reactions in flip-chip solder joints. J. Electron. Mater. 33, 1092 (2004).

    Article  CAS  Google Scholar 

  26. G.Y. Jang, C.S. Huang, L.Y. Hsiao, J.G. Duh, and H. Takahashi: Mechanism of interfacial reaction for the Sn–Pb solder bump with Ni/Cu under-bump metallization in flip-chip technology. J. Electron. Mater. 33, 1118 (2004).

    Article  CAS  Google Scholar 

  27. T.B. Massalski: Binary Alloy Phase Diagrams (ASM, Metals Park, OH, 1986), p. 85.

    Google Scholar 

  28. J.M. Song, G.F. Lan, T.S. Lui, and L.H. Chen: Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys. Scripta Mater. 48, 1047 (2003).

    Article  CAS  Google Scholar 

  29. T.C. Chang, Y.T. Hsu, M.H. Hon, and M.C. Wang: Enhancement of the wettability and solder joint reliability at the Sn–9Zn–0.5Ag lead-free solder alloy–Cu interface by Ag precoating. J. Alloys Compd. 360, 217 (2003).

    Article  CAS  Google Scholar 

  30. P.C. Shih and K.L. Lin: Interfacial bonding behavior with introduction of Sn–Zn–Bi paste to Sn–Ag–Cu BGA package during multiple reflows. J. Mater. Res. 20(1), 219 (2005).

    Article  CAS  Google Scholar 

  31. T.B. Massalski: Binary Alloy Phase Diagrams (ASM, Metals Park, OH, 1986), p. 540.

    Google Scholar 

  32. S.K. Kang, J. Horkans, P.C. Andricacos, R.A. Carruthers, J. Cotte, M. Datta, P. Gruber, J.M.E Harper, K. Kwietniak, C. Sambucetti, L. Shi, G. Brouillette, and D. Danovitch: Pb-free solder alloys for flip chip applications, in Electronic Components and Technology Conference 1999 Proceedings, pp. 283–288.

  33. H.P.R Frederikse, R.J. Fields, and A. Feldman: Thermal and electrical properties of copper-tin and nickel-tin intermetallics. J. Appl. Phys. 72, 2879 (1992).

    Article  CAS  Google Scholar 

  34. F. Seitz: The Modern Theory of Solids (McGraw-Hill, New York, 1940), pp. 10–12.

    Google Scholar 

  35. Handbook of Chemistry and Physics, 43rd edition (The Chemical Rubber Publishing Co.), pp. 2626–2633.

  36. B.S. Chiou, K.C. Liu, J.G. Duh, and P.S. Palanisamy: Intermetallic formation on the fracture of Sn/Pb solder and Pd/Ag conductor interfaces, in IEEE Transactions on Components, Hybrids and Manufacturing Technology (1990), Vol. 13, pp. 267–274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Cheng Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, PC., Lin, KL. Electrical resistance of Sn–Ag–Cu ball grid array packages with Sn–Zn–Bi addition jointed at 240 °C. Journal of Materials Research 22, 113–123 (2007). https://doi.org/10.1557/jmr.2007.0015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0015

Navigation