Skip to main content
Log in

Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present work reports nitrogen doping of self-organized TiO2 nanotubular layers. Different thicknesses of the nanotubular layer architecture were formed by electrochemical anodization of Ti in different fluoride-containing electrolytes; tube lengths were 500 nm, 2.5 μm, and 6.1 μm. As-formed nanotube layers were annealed to an anatase structure and treated in ammonia environment at 550 °C to achieve nitrogen doping. The crystal structure, morphology, composition and photoresponse of the N-doped were characterized by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and photoelectrochemical measurements. Results clearly show that successful N-doping of the TiO2 nanotubular layers can be achieved upon ammonia treatment. The magnitude of the photoresponse in ultraviolet and visible light is strongly dependent on the thicknesses of the layers. This effect is ascribed to recombination effects along the tube length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  2. A. Mills, S.L. Hunte: An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A: Chem. 108, 1 (1997).

    Article  CAS  Google Scholar 

  3. B. ÓRegan, M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Article  Google Scholar 

  4. J.M. Macak, H. Tsuchiya, A. Ghicov, P. Schmuki: Dye-sensitized anodic TiO2 nanotubes. Electrochem. Comm. 7, 1133 (2005).

    Article  CAS  Google Scholar 

  5. M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoka: The preparation of highly efficient titanium oxide-based photofunctional materials. Ann. Rev. Mater. Res. 35, 1 (2005).

    Article  CAS  Google Scholar 

  6. K. Wilke, H.D. Breuer: The influence of transition metal doping on the physical and photocatalytical properties of titania. J. Photochem. Photobiol., A 127, 107 (1999).

    Article  Google Scholar 

  7. S. Sakthivel, H. Kisch: Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem., Int. Ed. Engl. 42, 4908 (2003).

    Article  CAS  Google Scholar 

  8. L. Lin, W. Lin, X. Zhu, B. Zhao, Y. Xie: Phospor-doped titania—A novel photocatalyst active in visible light. Chem. Lett. (Jpn.). 34, 284 (2005).

    Article  CAS  Google Scholar 

  9. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga: Visible-light photocatalyst in nitrogen-doped titanium oxides. Science 293, 269 (2001).

    Article  CAS  Google Scholar 

  10. B. Kosowska, S. Mozia, A. Morawski, B. Grznil, M. Janus, K. Kalucki: The preparation of TiO2–nitrogen doped by calcination of TiO2· xH2O under ammonia atmosphere for visible light photocatalysis. Sol. Energy Mater. Sol. Cells 88, 269 (2005).

    Article  CAS  Google Scholar 

  11. T. Lindgren, J.M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.G. Granvist, S.E. Lindquist: Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive dc magnetron sputtering. J. Phys. Chem. B 107, 5709 (2003).

    Article  CAS  Google Scholar 

  12. V. Zwilling, M. Aucouturier, E. Darque-Ceretti: Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta 45, 921 (1999).

    Article  CAS  Google Scholar 

  13. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).

    Article  CAS  Google Scholar 

  14. R. Beranek, H. Hildebrand, P. Schmuki: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-St. Lett. 6, B12 (2003).

    Article  CAS  Google Scholar 

  15. J. Macak, H. Tsuchiya, P. Schmuki: High-aspect ratio TiO2 nanotubes by anodization of titanium. Angew. Chem., Int. Ed. Engl. 44, 2100 (2005).

    Article  CAS  Google Scholar 

  16. A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki: Titanium dioxide nanotubes prepared in phosphate electrolytes. Electrochem. Commun. 7, 505 (2005).

    Article  CAS  Google Scholar 

  17. L.V. Taveira, J.M. Macak, H. Tsuchiya, L.F.P Dick, P. Schmuki: Initiation and growth of self-organized TiO2 nanotubes anodically formed in (NH4)2SO4/NH4F electrolytes. J. Electrochem. Soc. 152, B405 (2005).

    Article  CAS  Google Scholar 

  18. J.M. Macak, K. Sirotna, P. Schmuki: Self-organized porous titanium oxide prepared in Na2SO4/NaF. Electrochim. Acta 50, 3679 (2005).

    Article  CAS  Google Scholar 

  19. J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki: Smooth anodic TiO2 nanotubes. Angew. Chem., Int. Ed. Engl. 44, 7463 (2005).

    Article  CAS  Google Scholar 

  20. J.M. Macak, H. Tsuchiya, S. Bauer, A. Ghicov, P. Schmuki, P.J. Barczuk, M.Z. Nowakowska, M. Chojak, P.J. Kulesza: Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles; Enhancement of the electrocatalytic oxidation of methanol. Electrochem. Commun. 7, 1417 (2005).

    Article  CAS  Google Scholar 

  21. A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, S. Kleber, P. Schmuki: TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation. Chem. Phys. Lett. 419, 426 (2006).

    Article  CAS  Google Scholar 

  22. A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki: Nitrogen-doped TiO2 nanotube arrays with strongly enhanced photoresponse in the visible range. Nano Lett. 6, 1080 (2006).

    Article  CAS  Google Scholar 

  23. R.P. Vitiello, J.M. Macak, A. Ghicov, H. Tsuchiya, L.F.P Dick, P. Schmuki: N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem. Commun. 8, 544 (2006).

    Article  CAS  Google Scholar 

  24. R. Beranek, H. Tsuchiya, T. Sugishima, J.M. Macak, L. Taveira, S. Fujimoto, H. Kisch, P. Schmuki: Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl. Phys. Lett. 87, 243114 (2005).

    Article  Google Scholar 

  25. W.W. Gärtner: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84 (1959).

    Article  Google Scholar 

  26. E.J. Johnson: Semiconductors and Semimetals, Vol. 3 (Academic, New York, 1967), p. 153.

    Article  Google Scholar 

  27. T. Dittrich: Porous TiO2: Electron transport and application. Phys. Status Solidi A 182, 447 (2000).

    Article  CAS  Google Scholar 

  28. M. Grätzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  Google Scholar 

  29. N.C. Saha, H.G. Tompkins: Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schmuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macak, J.M., Ghicov, A., Hahn, R. et al. Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses. Journal of Materials Research 21, 2824–2828 (2006). https://doi.org/10.1557/jmr.2006.0344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0344

Navigation