Skip to main content
Log in

Improving glass-forming ability of Mg−Cu−Y via substitutional alloying: Effects of Ag versus Ni

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Based on the best bulk metallic glass (BMG) forming alloy in the Mg−Cu−Y ternary system, we introduced Ag (or Ni) to partially substitute for Cu to improve the glass-forming ability (GFA). The objective of this paper is twofold. First, we illustrate in detail a recently developed search strategy, which was proposed but only briefly outlined in our previous publication [H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005)]. The protocol to navigate in three-dimensional composition space to land large BMGs is spelled out step-by-step using the pseudo-ternary Mg−(Cu,Ag)−Y as the model system. Second, our ability to locate the best BMG former in the composition tetrahedron allows us to systematically examine, and conclude on, the effects of a given alloying element. The large improvement in glass-forming ability in the Mg−(Cu,Ag)−Y system relative to the based ternary will be contrasted with the reduced glass-forming ability in the Mg−(Cu,Ni)−Y pseudo ternary system. It is demonstrated that the improvement of glass-forming ability requires judicious choice of substitutional alloying elements and concentrations, rather than simple additions of multiple elements assuming the “confusion principle.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).

    Article  CAS  Google Scholar 

  2. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).

    Article  CAS  Google Scholar 

  3. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  4. Y. He, R.B. Schwarz, and J.I. Archuleta: Bulk glass formation in the Pd−Ni−P system. Appl. Phys. Lett. 69, 1861 (1996).

    Article  CAS  Google Scholar 

  5. A. Inoue, N. Nishiyama, and H. Kimura: Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans., JIM 38, 179 (1997).

    Article  CAS  Google Scholar 

  6. J. Schroers and W.L. Johnson: Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system. Appl. Phys. Lett. 84, 3666 (2004).

    Article  CAS  Google Scholar 

  7. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  8. A. Inoue and T. Zhang: Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans., JIM 37, 185 (1996).

    Article  CAS  Google Scholar 

  9. F.Q. Guo, S.J. Poon, and G.J. Shiflet: Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83, 2575 (2003).

    Article  CAS  Google Scholar 

  10. F.Q. Guo, H.J. Wang, S.J. Poon, and G.J. Shiflet: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 (2005).

    Article  CAS  Google Scholar 

  11. Z.P. Lu, C.T. Liu, J.R. Thompson, and W.D. Porter: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).

    Article  CAS  Google Scholar 

  12. V. Ponnambalam, S.J. Poon, and G.J. Shiflet: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).

    Article  CAS  Google Scholar 

  13. J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, and G. Wang: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 (2005).

    Article  CAS  Google Scholar 

  14. D.H. Xu, G. Duan, and W.L. Johnson: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).

    Article  CAS  Google Scholar 

  15. S.W. Lee, M.Y. Huh, E. Fleury, and J.C. Lee: Crystallization-induced plasticity of Cu−Zr containing bulk amorphous alloys. Acta Mater. 54, 349 (2006).

    Article  CAS  Google Scholar 

  16. C.L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, and J. Xu: A new centimeter-diameter Cu-based bulk metallic glass. Scripta Mater. 54, 1403 (2006).

    Article  CAS  Google Scholar 

  17. E.S. Park and D.H. Kim: Formation of Ca−Mg−Zn bulk glassy alloy by casting into cone-shaped copper mold. J. Mater. Res. 19, 685 (2004).

    Article  CAS  Google Scholar 

  18. O.N. Senkov and J.M. Scott: Glass forming ability and thermal stability of ternary Ca−Mg−Zn bulk metallic glasses. J. Non-Cryst. Solids 351, 3087 (2005).

    Article  CAS  Google Scholar 

  19. E.S. Park and D.H. Kim: Formation of Mg−Cu−Ni−Ag−Zn−Y−Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. J. Mater. Res. 20, 1465 (2005).

    Article  CAS  Google Scholar 

  20. A. Inoue, T. Zhang, A. Takeuchi, and W. Zhang: Hard magnetic bulk amorphous Nd−Fe−Al alloys of 12 mm in diameter made by suction casting. Mater. Trans., JIM 37, 636 (1996).

    Article  CAS  Google Scholar 

  21. R. Li, S. Pang, H. Men, C. Ma, and T. Zhang: Formation and mechanical properties of (Ce−La−Pr−Nd)−Co−Al bulk glassy alloys with superior glass-forming ability. Scripta Mater. 54, 1123 (2006).

    Article  CAS  Google Scholar 

  22. A.L. Greer: Confusion by design. Nature 366, 303 (1993).

    Article  Google Scholar 

  23. H. Ma, Q. Zheng, J. Xu, Y. Li, and E. Ma: Doubling the critical size for bulk metallic glass formation in the Mg−Cu−Y ternary system. J. Mater. Res. 20, 2252 (2005).

    Article  CAS  Google Scholar 

  24. A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto: Mg−Cu−Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans., JIM 32, 609 (1991).

    Article  CAS  Google Scholar 

  25. D.B. Miracle, W.S. Sanders, and O.N. Senkov: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. 83, 2409 (2003).

    Article  CAS  Google Scholar 

  26. F.Q. Guo, S.J. Poon, and G.J. Shiflet: Enhanced bulk metallic glass formability by combining chemical compatibility and atomic size effects. J. Appl. Phys. 97, 013512 (2005).

    Article  CAS  Google Scholar 

  27. D. Turnbull: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  28. A. Inoue, T. Zhang, and T. Masumoto: Glass-forming ability of alloys. J. Non-Cryst. Solids 156–158, 473 (1993).

    Article  Google Scholar 

  29. Z.P. Lu and C.T. Liu: Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505 (2003).

    Article  CAS  Google Scholar 

  30. H. Tan, Y. Zhang, D. Ma, Y.P. Feng, and Y. Li: Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La−Al− (Cu, Ni) pseudo ternary system. Acta Mater. 51, 4551 (2003).

    Article  CAS  Google Scholar 

  31. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, and E. Ma: Bulk metallic glass formation in the binary Cu−Zr system. Appl. Phys. Lett. 84, 4029 (2004).

    Article  CAS  Google Scholar 

  32. D. Ma, H. Tan, D. Wang, Y. Li, and E. Ma: Strategy for pinpointing the best glass−forming alloys. Appl. Phys. Lett. 86, 191906 (2005).

    Article  CAS  Google Scholar 

  33. H.G. Kang, E.S. Park, W.T. Kim, D.H. Kim, and H.K. Cho: Fabrication of bulk Mg−Cu−Ag−Y glassy alloy by squeeze casting. Mater. Trans., JIM 41, 846 (2000).

    Article  CAS  Google Scholar 

  34. L.C. Chen and F. Spaepen: Analysis of calorimetric measurements of grain-growth. J. Appl. Phys. 69, 679 (1991).

    Article  CAS  Google Scholar 

  35. X.H. Lin and W.L. Johnson: Formation of Ti−Zr−Cu−Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).

    Article  CAS  Google Scholar 

  36. O.N. Senkov, D.B. Miracle, and H.M. Mullens: Topological criteria for amorphization based on a thermodynamic approach. J. Appl. Phys. 97, 103502 (2005).

    Article  CAS  Google Scholar 

  37. D.B. Miracle: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).

    Article  CAS  Google Scholar 

  38. E.S. Park, D.H. Kim, and W.T. Kim: Parameter for glass forming ability of ternary alloy systems. Appl. Phys. Lett. 86, 061907 (2005).

    Article  CAS  Google Scholar 

  39. O.N. Senkov and J.M. Scott: Specific criteria for selection of alloy compositions for bulk metallic glasses. Scripta Mater. 50, 449 (2004).

    Article  CAS  Google Scholar 

  40. S.V. Madge and A.L. Greer: Effect of Ag addition on the glass-forming ability and thermal stability of Mg−Cu−Y alloys. Mater. Sci. Eng., A 375–377, 759 (2004).

    Article  CAS  Google Scholar 

  41. B.S. Murty and K. Hono: Formation of nanocrystalline particles in glassy matrix in melt-spun Mg−Cu−Y based alloys. Mater. Trans., JIM 41, 1538 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Shi, LL., Xu, J. et al. Improving glass-forming ability of Mg−Cu−Y via substitutional alloying: Effects of Ag versus Ni. Journal of Materials Research 21, 2204–2214 (2006). https://doi.org/10.1557/jmr.2006.0294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0294

Navigation