Skip to main content
Log in

Identifying key features for predicting glass-forming ability of bulk metallic glasses via interpretable machine learning

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bulk metallic glasses (BMGs) have been receiving extensive attention in the community of physics and materials science due to their attractive properties. The traditional trial-and-error approach is inefficient in designing good BMGs, then it is imperative to elaborate a prediction scheme to accelerate the development of BGMs. This work combines a composite feature selection (c-FS) and machine learning (ML) algorithm to construct a more effective strategy for predicting the critical diameter (Dmax) of BMGs. Apart from the characteristic temperatures, parameters involving domain knowledge such as thermodynamics, dynamics, and topology are also considered as the candidate features. A c-FS was devised to optimize the features, and a most efficient model was developed using the optimal subset. Our model holds the highest R2 score (0.807) compared to the 29 criteria reported. In addition, the SHapley Additive exPlanation (SHAP) approach was introduced to boost the interpretability of the model. Benefiting from our model and SHAP approach, a formation rule for large-size BMGs is uncovered. The efficacy of this model provides new guidance for the design of BMGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data availability

All preprocessing and ML processes are performed on Python. The EFS, XGB, and BO algorithms are available in Mlxtend, XGBoost, and Optuna libraries, respectively. SHAP values are calculated by Shap library, and other algorithms are available in scikit-learn library. In addition, we have shared our data in Supplementary Materials.

References

  1. Demetriou MD, Launey ME, Garrett G et al (2011) A damage-tolerant glass. Nature Mater 10:123–128. https://doi.org/10.1038/nmat2930

    Article  CAS  Google Scholar 

  2. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306. https://doi.org/10.1016/S1359-6454(99)00300-6

    Article  CAS  Google Scholar 

  3. Telford M (2004) The case for bulk metallic glass. Mater Today 7:36–43. https://doi.org/10.1016/S1369-7021(04)00124-5

    Article  CAS  Google Scholar 

  4. Johnson WL (1999) bulk glass-forming metallic alloys: science and technology. MRS Bull 24:42–56. https://doi.org/10.1557/S0883769400053252

    Article  CAS  Google Scholar 

  5. Chen M (2011) A brief overview of bulk metallic glasses. NPG Asia Mater 3:82–90. https://doi.org/10.1038/asiamat.2011.30

    Article  Google Scholar 

  6. Egami T (2003) Atomistic mechanism of bulk metallic glass formation. J Non-Cryst Solids 317:30–33. https://doi.org/10.1016/S0022-3093(02)02003-3

    Article  CAS  Google Scholar 

  7. Inoue A, Kato A, Zhang T et al (1991) Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater Trans JIM 32:609–616. https://doi.org/10.2320/matertrans1989.32.609

    Article  CAS  Google Scholar 

  8. Lu ZP, Tan H, Ng SC, Li Y (2000) The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Mater 42:667–673. https://doi.org/10.1016/S1359-6462(99)00417-0

    Article  CAS  Google Scholar 

  9. Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50:3501–3512. https://doi.org/10.1016/S1359-6454(02)00166-0

    Article  CAS  Google Scholar 

  10. Xiao X, Shoushi F, Guoming W et al (2004) Influence of beryllium on thermal stability and glass-forming ability of Zr–Al–Ni–Cu bulk amorphous alloys. J Alloy Compd 376:145–148. https://doi.org/10.1016/j.jallcom.2004.01.014

    Article  CAS  Google Scholar 

  11. Mondal K, Murty BS (2005) On the parameters to assess the glass forming ability of liquids. J Non-Cryst Solids 351:1366–1371. https://doi.org/10.1016/j.jnoncrysol.2005.03.006

    Article  CAS  Google Scholar 

  12. Chen Q, Shen J, Zhang D et al (2006) A new criterion for evaluating the glass-forming ability of bulk metallic glasses. Mater Sci Eng A 433:155–160. https://doi.org/10.1016/j.msea.2006.06.053

    Article  CAS  Google Scholar 

  13. Du XH, Huang JC, Liu CT, Lu ZP (2007) New criterion of glass forming ability for bulk metallic glasses. J Appl Phys 101:086108. https://doi.org/10.1063/1.2718286

    Article  CAS  Google Scholar 

  14. Fan GJ, Choo H, Liaw PK (2007) A new criterion for the glass-forming ability of liquids. J Non-Cryst Solids 353:102–107. https://doi.org/10.1016/j.jnoncrysol.2006.08.049

    Article  CAS  Google Scholar 

  15. Du XH, Huang JC (2008) New criterion in predicting glass forming ability of various glass-forming systems. Chin Phys B 17:249. https://doi.org/10.1088/1674-1056/17/1/043

    Article  CAS  Google Scholar 

  16. Yuan Z-Z, Bao S-L, Lu Y et al (2008) A new criterion for evaluating the glass-forming ability of bulk glass forming alloys. J Alloy Compd 459:251–260. https://doi.org/10.1016/j.jallcom.2007.05.037

    Article  CAS  Google Scholar 

  17. Long Z, Wei H, Ding Y et al (2009) A new criterion for predicting the glass-forming ability of bulk metallic glasses. J Alloy Compd 475:207–219. https://doi.org/10.1016/j.jallcom.2008.07.087

    Article  CAS  Google Scholar 

  18. Ji X, Pan Y (2009) A thermodynamic approach to assess glass-forming ability of bulk metallic glasses. Trans Nonferrous Metals Soc China 19:1271–1279. https://doi.org/10.1016/S1003-6326(08)60438-0

    Article  CAS  Google Scholar 

  19. Zhang G-H, Chou K-C (2009) A criterion for evaluating glass-forming ability of alloys. J Appl Phys 106:094902. https://doi.org/10.1063/1.3255952

    Article  CAS  Google Scholar 

  20. Hong-Qing W, Xiang-An L, Zhi-Lin L et al (2009) Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Phys Sin 58:2556–2564. https://doi.org/10.7498/aps.58.2556

    Article  Google Scholar 

  21. Guo S, Liu CT (2010) New glass forming ability criterion derived from cooling consideration. Intermetallics 18:2065–2068. https://doi.org/10.1016/j.intermet.2010.06.012

    Article  CAS  Google Scholar 

  22. Dong B, Zhou S, Li D et al (2011) A new criterion for predicting glass forming ability of bulk metallic glasses and some critical discussions. Prog Nat Sci Mater Int 21:164–172. https://doi.org/10.1016/S1002-0071(12)60051-3

    Article  Google Scholar 

  23. Błyskun P, Maj P, Kowalczyk M et al (2015) Relation of various GFA indicators to the critical diameter of Zr-based BMGs. J Alloy Compd 625:13–17. https://doi.org/10.1016/j.jallcom.2014.11.112

    Article  CAS  Google Scholar 

  24. Tripathi MK, Ganguly S, Dey P, Chattopadhyay PP (2016) Evolution of glass forming ability indicator by genetic programming. Comput Mater Sci 118:56–65. https://doi.org/10.1016/j.commatsci.2016.02.037

    Article  CAS  Google Scholar 

  25. Long Z, Liu W, Zhong M et al (2018) A new correlation between the characteristics temperature and glass-forming ability for bulk metallic glasses. J Therm Anal Calorim 132:1645–1660. https://doi.org/10.1007/s10973-018-7050-0

    Article  CAS  Google Scholar 

  26. Xiong J, Zhang T-Y, Shi S-Q (2019) Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun 9:576–585. https://doi.org/10.1557/mrc.2019.44

    Article  CAS  Google Scholar 

  27. Deng R, Long Z, Peng L et al (2020) A new mathematical expression for the relation between characteristic temperature and glass-forming ability of metallic glasses. J Non-Cryst Solids 533:119829. https://doi.org/10.1016/j.jnoncrysol.2019.119829

    Article  CAS  Google Scholar 

  28. Ren B, Long Z, Deng R (2021) A new criterion for predicting the glass-forming ability of alloys based on machine learning. Comput Mater Sci 189:110259. https://doi.org/10.1016/j.commatsci.2020.110259

    Article  CAS  Google Scholar 

  29. Wang WH (2009) Bulk metallic glasses with functional physical properties. Adv Mater 21:4524–4544. https://doi.org/10.1002/adma.200901053

    Article  CAS  Google Scholar 

  30. Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57:487–656. https://doi.org/10.1016/j.pmatsci.2011.07.001

    Article  CAS  Google Scholar 

  31. Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59:2243–2267. https://doi.org/10.1016/j.actamat.2010.11.027

    Article  CAS  Google Scholar 

  32. Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132:233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  33. Jiang Q, Chi BQ, Li JC (2003) A valence electron concentration criterion for glass-formation ability of metallic liquids. Appl Phys Lett 82:2984–2986. https://doi.org/10.1063/1.1571984

    Article  CAS  Google Scholar 

  34. Senkov ON, Miracle DB (2001) Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull 36:2183–2198. https://doi.org/10.1016/S0025-5408(01)00715-2

    Article  CAS  Google Scholar 

  35. Fan Z, Ding J, Ma E (2020) Machine learning bridges local static structure with multiple properties in metallic glasses. Mater Today 40:48–62. https://doi.org/10.1016/j.mattod.2020.05.021

    Article  CAS  Google Scholar 

  36. Fan Z, Ma E (2021) Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning. Nat Commun 12:1–13. https://doi.org/10.1038/s41467-021-21806-z

    Article  CAS  Google Scholar 

  37. Fan Z, Ma E, Falk ML (2022) Predicting the location of shear band initiation in a metallic glass. Phys Rev Mater 6:065602. https://doi.org/10.1103/PhysRevMaterials.6.065602

    Article  CAS  Google Scholar 

  38. Fan Z, Xing B, Cao P (2022) Predicting path-dependent diffusion barrier spectra in vast compositional space of multi-principal element alloys via convolutional neural networks. Acta Mater 237:118159. https://doi.org/10.1016/j.actamat.2022.118159

    Article  CAS  Google Scholar 

  39. Fan Z, Tanaka H (2024) Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon. Nat Commun 15:368. https://doi.org/10.1038/s41467-023-44332-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng L, Long Z, Zhao M (2021) Determination of glass forming ability of bulk metallic glasses based on machine learning. Comput Mater Sci 195:110480. https://doi.org/10.1016/j.commatsci.2021.110480

    Article  CAS  Google Scholar 

  41. Ward L, O’Keeffe SC, Stevick J et al (2018) A machine learning approach for engineering bulk metallic glass alloys. Acta Mater 159:102–111. https://doi.org/10.1016/j.actamat.2018.08.002

    Article  CAS  Google Scholar 

  42. Liu X, Long Z, Yang L et al (2021) Prediction of glass forming ability in amorphous alloys based on different machine learning algorithms. J Non-Cryst Solids 570:121000. https://doi.org/10.1016/j.jnoncrysol.2021.121000

    Article  CAS  Google Scholar 

  43. Zhang YX, Xing GC, Sha ZD, Poh LH (2021) A two-step fused machine learning approach for the prediction of glass-forming ability of metallic glasses. J Alloy Compd 875:160040. https://doi.org/10.1016/j.jallcom.2021.160040

    Article  CAS  Google Scholar 

  44. Liu XW, Long ZL, Zhang W, Yang LM (2022) Key feature space for predicting the glass-forming ability of amorphous alloys revealed by gradient boosted decision trees model. J Alloy Compd 901:163606. https://doi.org/10.1016/j.jallcom.2021.163606

    Article  CAS  Google Scholar 

  45. Lu F, Liang Y, Wang X et al (2022) Prediction of amorphous forming ability based on artificial neural network and convolutional neural network. Comput Mater Sci 210:111464. https://doi.org/10.1016/j.commatsci.2022.111464

    Article  CAS  Google Scholar 

  46. Pan J, Jia Y, Li K et al (2023) Does the GFA of alloys depend on the atomic size ratio: A DT-based ML study. Cryst Growth Des 23:5912–5918. https://doi.org/10.1021/acs.cgd.3c00509

    Article  CAS  Google Scholar 

  47. Pan J, Jiang X, Tian Z et al (2022) ML Model optimization-selection and GFA prediction for binary alloys. Cryst Growth Des 22:2462–2469. https://doi.org/10.1021/acs.cgd.1c01519

    Article  CAS  Google Scholar 

  48. Kedharnath A, Kapoor R, Sarkar A (2024) Dislocation–grain boundary interactions in Ta: numerical, molecular dynamics, and machine learning approaches. J Mater Sci 59:243–257. https://doi.org/10.1007/s10853-023-09167-y

    Article  CAS  Google Scholar 

  49. Long T, Long Z, Peng Z (2023) Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning. J Mater Sci 58:8833–8844. https://doi.org/10.1007/s10853-023-08528-x

    Article  CAS  Google Scholar 

  50. Jeon J, Seo N, Son SB et al (2022) Application of explainable artificial intelligence for prediction and feature analysis of carbon diffusivity in austenite. J Mater Sci 57:18142–18153. https://doi.org/10.1007/s10853-022-07538-5

    Article  CAS  Google Scholar 

  51. Yan F, Song K, Liu Y et al (2020) Predictions and mechanism analyses of the fatigue strength of steel based on machine learning. J Mater Sci 55:15334–15349. https://doi.org/10.1007/s10853-020-05091-7

    Article  CAS  Google Scholar 

  52. Lundberg S, Lee S-I (2017) A Unified Approach to Interpreting Model Predictions. In: arXiv.org. https://arxiv.org/abs/1705.07874v2

  53. Samavatian M, Gholamipour R, Samavatian V (2021) Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Comput Mater Sci 186:110025. https://doi.org/10.1016/j.commatsci.2020.110025

    Article  CAS  Google Scholar 

  54. Ghorbani A, Askari A, Malekan M, Nili-Ahmadabadi M (2022) Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-022-15981-2

    Article  CAS  Google Scholar 

  55. Xiong J, Shi S-Q, Zhang T-Y (2020) A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater Des 187:108378. https://doi.org/10.1016/j.matdes.2019.108378

    Article  CAS  Google Scholar 

  56. Liu X, Li X, He Q et al (2020) Machine learning-based glass formation prediction in multicomponent alloys. Acta Mater 201:182–190. https://doi.org/10.1016/j.actamat.2020.09.081

    Article  CAS  Google Scholar 

  57. Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater 2:1–7. https://doi.org/10.1038/npjcompumats.2016.28

    Article  Google Scholar 

  58. Bharath K, Chelvane JA, Kumawat MK et al (2019) Theoretical prediction and experimental evaluation of glass forming ability, density and equilibrium point of Ta based bulk metallic glass alloys. J Non-Cryst Solids 512:174–183. https://doi.org/10.1016/j.jnoncrysol.2019.03.001

    Article  CAS  Google Scholar 

  59. Guo S (2015) Phase selection rules for cast high entropy alloys: an overview. Mater Sci Technol 31:1223–1230. https://doi.org/10.1179/1743284715Y.0000000018

    Article  CAS  Google Scholar 

  60. Mansoori GA, Carnahan NF, Starling KE, Leland TW Jr (2003) Equilibrium thermodynamic properties of the mixture of hard spheres. J Chem Phys 54:1523–1525. https://doi.org/10.1063/1.1675048

    Article  Google Scholar 

  61. Ramakrishna Rao B, Srinivas M, Shah AK et al (2013) A new thermodynamic parameter to predict glass forming ability in iron based multi-component systems containing zirconium. Intermetallics 35:73–81. https://doi.org/10.1016/j.intermet.2012.11.020

    Article  CAS  Google Scholar 

  62. Mizutani U, Sato H (2017) The physics of the hume-rothery electron concentration rule. Crystals 7:9. https://doi.org/10.3390/cryst7010009

    Article  CAS  Google Scholar 

  63. Zhang H, Song L, Xu W et al (2019) Correlations between the thermal properties and the electronegativity of soft magnetic Fe-based amorphous alloys. Intermetallics 108:61–65. https://doi.org/10.1016/j.intermet.2019.02.005

    Article  CAS  Google Scholar 

  64. Fang S, Xiao X, Xia L et al (2003) Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non-Cryst Solids 321:120–125. https://doi.org/10.1016/S0022-3093(03)00155-8

    Article  CAS  Google Scholar 

  65. Miedema AR, De Boer FR, Boom R (1981) Predicting heat effects in alloys. Physica B+C 103:67–81. https://doi.org/10.1016/0378-4363(81)91003-2

    Article  CAS  Google Scholar 

  66. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422. https://doi.org/10.1023/A:1012487302797

    Article  Google Scholar 

  67. Raschka S (2018) MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack. JOSS 3:638. https://doi.org/10.21105/joss.00638

    Article  Google Scholar 

  68. Su X, Yan X, Tsai C-L (2012) Linear regression. Wiley Interdiscip Rev Comput Stat 4:275–294

    Article  Google Scholar 

  69. Peterson LE (2009) K-nearest neighbor. Scholarpedia 4:1883. https://doi.org/10.4249/scholarpedia.1883

    Article  Google Scholar 

  70. Awad M, Khanna R (2015) Support vector regression. Efficient learning machines. Apress, Berkeley, pp 67–80

    Chapter  Google Scholar 

  71. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  72. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. pp 785–794. https://doi.org/10.1145/2939672.2939785

  73. Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press. https://books.google.com/books?id=RC43AgAAQBAJ

  74. Friedman L, Komogortsev OV (2019) Assessment of the effectiveness of seven biometric feature normalization techniques. IEEE Trans Inf Forensics Secur 14:2528–2536

    Article  Google Scholar 

  75. Rodriguez JD, Perez A, Lozano JA (2010) Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 32:569–575. https://doi.org/10.1109/TPAMI.2009.187

    Article  PubMed  Google Scholar 

  76. Shahriari B, Swersky K, Wang Z et al (2016) Taking the human out of the loop: a review of bayesian optimization. Proc IEEE 104:148–175. https://doi.org/10.1109/JPROC.2015.2494218

    Article  Google Scholar 

  77. Lu ZP, Liu CT, Dong YD (2004) Effects of atomic bonding nature and size mismatch on thermal stability and glass-forming ability of bulk metallic glasses. J Non-Cryst Solids 341:93–100. https://doi.org/10.1016/j.jnoncrysol.2004.04.024

    Article  CAS  Google Scholar 

  78. Wang JQ, Wang WH, Yu HB, Bai HY (2009) Correlations between elastic moduli and molar volume in metallic glasses. Appl Phys Lett 94:121904. https://doi.org/10.1063/1.3106110

    Article  CAS  Google Scholar 

  79. Lin XH, Johnson WL (1995) Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J Appl Phys 78:6514–6519. https://doi.org/10.1063/1.360537

    Article  CAS  Google Scholar 

  80. Gu J-L, Shao Y, Yao K-F (2019) The novel Ti-based metallic glass with excellent glass forming ability and an elastic constant dependent glass forming criterion. Materialia 8:100433. https://doi.org/10.1016/j.mtla.2019.100433

    Article  CAS  Google Scholar 

  81. Zhang GQ, Jiang QK, Chen LY et al (2006) Synthesis of centimeter-size Ag-doped Zr–Cu–Al metallic glasses with large plasticity. J Alloy Compd 424:176–178. https://doi.org/10.1016/j.jallcom.2006.06.088

    Article  CAS  Google Scholar 

  82. Zhang QS, Zhang W, Louzguine-Luzgin DV, Inoue A (2010) Effect of substituting elements on glass-forming ability of the new Zr48Cu36Al8Ag8 bulk metallic glass-forming alloy. J Alloy Compd 504:S18–S21. https://doi.org/10.1016/j.jallcom.2010.02.052

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support of the National Key R&D Program of China (Grant No. 2021YFB0300102), the National Natural Science Foundation of China (Grant Nos. 62376091, 51661005 and U1612442).

Author information

Authors and Affiliations

Authors

Contributions

YZ provided investigation, methodology, data curation, formal analysis, and writing—original draft. ZT performed investigation, supervision, writing—review and editing, and funding acquisition. QZ presented supervision, suggestion, and writing—review and editing. AB carried out supervision and suggestion. QX conducted supervision and suggestion.

Corresponding author

Correspondence to Zean Tian.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 251 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Tian, Z., Zheng, Q. et al. Identifying key features for predicting glass-forming ability of bulk metallic glasses via interpretable machine learning. J Mater Sci 59, 8318–8337 (2024). https://doi.org/10.1007/s10853-024-09678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09678-2

Navigation