Skip to main content
Log in

Effect of phosphorous content on phase transformation induced stress in Sn/Ni(P) thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The film stress evolutions induced by the phase transformation of Sn/Ni(P) films during thermal treatment were investigated using an in situ measurement of wafer curvature by laser scanning. Apparently, tensile stress developed due to the layer-by-layer formation of Ni3Sn4 and Ni3P phases for Sn/Ni(11.7P) films, and a compressive stress evolved for Sn/Ni(3P) films, despite the same phase transformation. The molar volume mismatch and x-ray diffraction analyses before and after the reaction between Sn and Ni(P) films suggested that a compressive stress existed in the Ni3Sn4 layer while the Ni3P layer was under a tensile stress state. The apparent stress states (tensile or compressive) for overall thickness of the films formed by the layer-by-layer transformation in Sn/Ni(P) were determined by the competition between compressive stress related to Ni3Sn4 formation and tensile stress caused by Ni3P formation. The stress states were dependent upon the relative thickness of the product layers with varying P content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Tummala: Fundamentals of Microsystems Packaging (McGraw-Hill, New York, 2001), p. 361.

    Google Scholar 

  2. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson: Solder reaction-assisted crystallization of electroless Ni–P under bump metallization in low cost flip chip technology. J. Appl. Phys. 85, 8456 (1999).

    Article  CAS  Google Scholar 

  3. J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu: Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization. J. Appl. Phys. 88, 6359 (2000).

    Article  CAS  Google Scholar 

  4. C.Y. Lee and K.L. Lin: The interaction kinetics and compound formation between electroless Ni–P and solder. Thin Solid Films 249, 201 (1994).

    Article  CAS  Google Scholar 

  5. B. Färber, E. Cadel, A. Menand, G. Schmitz, and R. Kirchheim: Phosphorus segregation in nanocrystalline Ni–3.6 at.%P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48, 789 (2000).

    Article  Google Scholar 

  6. Y.C. Sohn, Yu. Jin, S.K. Kang, D.Y. Shih, and W.K. Choi: Effects of phosphorus content on the reaction of electroless Ni–P with Sn and crystallization of Ni–P. J. Electron. Mater. 33, 790 (2004).

    Article  CAS  Google Scholar 

  7. P.L. Liu, Z. Xu, and J.K. Shang: Thermal stability of electroless-nickel/solder interface: Part A. Interfacial chemistry and microstructure. Metall. Mater. Trans. A 31, 2857 (2000).

    Article  Google Scholar 

  8. S.K. Kang and V. Ramachandran: Growth kinetics of intermetallic phases at the liquid Sn and solid Ni interface. Scripta Metall. 14, 421 (1980).

    Article  CAS  Google Scholar 

  9. D. Gur and M. Bamberger: Reactive isothermal solidification in the Ni–Sn system. Acta Mater. 46, 4917 (1998).

    Article  CAS  Google Scholar 

  10. S. Bader, W. Gust, and H. Hieber: Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn systems. Acta Metall. Mater. 43, 329 (1995).

    CAS  Google Scholar 

  11. C.Y. Liu, C. Chen, A.K. Mal, and K.N. Tu: Direct correlation between mechanical failure and metallurgical reaction in flip chip solder joints. J. Appl. Phys. 85, 3882 (1999).

    Article  CAS  Google Scholar 

  12. Y.D. Jeon, K.W. Paik, K.S. Bok, W.S. Choi, and C.L. Cho: Studies of electroless nickel under bump metallurgy-solder interfacial reactions and their effects on flip chip solder joint reliability. J. Electron. Mater. 31, 520 (2002).

    Article  CAS  Google Scholar 

  13. Y. Guo, S.M. Kuo, and C. Zhang: Reliability evaluations of under bump metallurgy in two solder systems. IEEE Trans. Comp. Packag. Technol. 24, 655 (2001).

    Article  Google Scholar 

  14. Y.C. Chan, P.L. Tu, C.W. Tang, K.C. Hung, and J.K.L Lai: Reliability studies of μBGA solder joints-effects of Ni–Sn intermetallic compound. IEEE Trans. Adv. Packag. 24, 25 (2001).

    Article  CAS  Google Scholar 

  15. J.H.L Pang and D.Y.R Chong: Flip chip on board solder joint reliability analysis using 2-D and 3-D FEA models. IEEE Trans. Adv. Packag. 24, 499 (2001).

    Article  Google Scholar 

  16. D. Mitchell, Y. Guo, and V. Sarihan: Methodology for studying the impact of intrinsic stress on the reliability of the electroless Ni UBM structure. IEEE Trans. Comp. Packag. Technol. 24, 667 (2001).

    Article  CAS  Google Scholar 

  17. J.Y. Song and J. Yu: Residual stress measurements in electroless plated Ni–P films. Thin Solid Films 415, 167 (2002).

    Article  CAS  Google Scholar 

  18. J.Y. Song, J. Yu, and T.Y. Lee: Analysis of phase transformation kinetics by intrinsic stress evolutions during the isothermal aging of amorphous Ni(P) and Sn/Ni(P) films. J. Mater. Res. 19, 1257 (2004).

    Article  CAS  Google Scholar 

  19. P.P. Buaud, F.M. d’Heurle, E.A. Irene, B.K. Patnaik, and N.R. Parikh: In situ strain measurements during the formation of platinum silicide films. J. Vac. Sci. Technol. B 9, 2536 (1991).

    Article  CAS  Google Scholar 

  20. O.B. Loopstra, E.R. van Snek, Th.H. de Keijser, and E.J. Mittemeijer: Model for stress and volume change of a thin film on a substrate upon annealing: application to amorphous Mo/Si multilayers. Phys. Rev. B: Condens. Matter 44, 13519 (1991).

    Article  CAS  Google Scholar 

  21. J.F. Jongste, P.F.A Alkemade, G.C.A.M Janssen, and S. Radelaar: Kinetics of the formation of C49 TiSi2 from Ti-Si multilayers as observed by in situ stress measurements. J. Appl. Phys. 74, 3869 (1993).

    Article  CAS  Google Scholar 

  22. G. Lucadamo and K. Barmak: Stress evolution in polycrystalline thin film reactions. Thin Solid Films 389, 8 (2001).

    Article  CAS  Google Scholar 

  23. H.Th. Hesemann, P. Müllner, and E. Arzt: Stress and texture development during martensitic transformation in cobalt thin films. Scripta Mater. 44, 25 (2001).

    Article  CAS  Google Scholar 

  24. J.Y. Song, J. Yu, and T.Y. Lee: Effects of reactive diffusion on stress evolution in Cu–Sn films. Scripta Mater. 51, 167 (2004).

    Article  CAS  Google Scholar 

  25. Electroless Plating: Fundamentals and Applications, edited by O.G. Mallory and B.J. Hajdu (American Electroplaters and Surface Finishers Society, Orlando, FL, 1990).

  26. K.N. Tu and R.D. Thompson: Kinetics of interfacial reaction in bimetallic Cu–Sn thin films. Acta Metall. 30, 947 (1982).

    Article  CAS  Google Scholar 

  27. G.G. Stoney: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London A 82, 172 (1909).

    Article  CAS  Google Scholar 

  28. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  29. The Mechanics of Solder Alloy Interconnects, edited by D.R. Frear, S.N. Burchett, H.S. Morgan and J.H. Lau (Van Nostrand Reinhold, New York, 1994), pp. 60.

    Google Scholar 

  30. T.P. Leervad Pedersen, J. Kalb, W.K. Njoroge, D. Wamwangi, M. Wuttig, and F. Spaepen: Mechanical stresses upon crystallization in phase change materials. Appl. Phys. Lett. 79, 3597 (2001).

    Article  Google Scholar 

  31. J.A. Floro, S.J. Hearne, J.A. Hunter, P. Kotula, E. Chason, S.C. Seel, and C.V. Thompson: The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films. J. Appl. Phys. 89, 4886 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J.Y., Yu, J. Effect of phosphorous content on phase transformation induced stress in Sn/Ni(P) thin films. Journal of Materials Research 21, 2261–2269 (2006). https://doi.org/10.1557/jmr.2006.0273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0273

Navigation