Skip to main content
Log in

Structure, Surface Morphology, and Optical and Electronic Properties of Annealed SnS Thin Films Obtained by CBD

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

SnS thin films were initially coated onto Pyrex substrates by the chemical bath deposition (CBD) method and annealed at various temperatures ranging from 200°C to 600°C for 30 min in nitrogen gas. X-ray diffraction (XRD) analysis revealed that a structural transition from face-centered cubic to orthorhombic occurs when the annealing temperature is over 500°C. The surface morphology of all thin layers was investigated by means of scanning electron microscopy and atomic force microscopy. The elemental composition of Sn and S, as measured by energy dispersive spectroscopy, is near the stoichiometric ratio. Optical properties studied by means of transmission and reflection measurements show an increase in the absorption coefficient with increasing annealing temperatures. The band gap energy is close to 1.5 eV, which corresponds to the optimum for photovoltaic applications. Last, the thermally stimulated current measurements show that the electrically active traps located in the band gap disappear after annealing at 500°C. These results suggest that, once again, annealing as a post-deposition treatment may be useful for improving the physical properties of the SnS layers included in photovoltaic applications. Moreover, the thermo-stimulated current method may be of practical relevance to explore the electronic properties of more conventional industrial methods, such as sputtering and chemical vapor deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Loferski, J. Appl. Phys. 27, 777 (1956).

    Article  Google Scholar 

  2. M. Devika, N. Koteeswara Reddy, and K.R. Gunasekhar, Thin Solid Films 520, 628 (2011).

    Article  Google Scholar 

  3. C. Gao, H. Shen, and L. Sun, Appl. Surf. Sci. 257, 6750 (2011).

    Article  Google Scholar 

  4. P.A. Nwofe, K.T. Ramakrishna Reddy, G. Sreedevi, J.K. Tan, I. Forbes, and R.W. Miles, Energy Procedia 15, 354 (2012).

  5. S. Koktysh, J.R. McBride, R.D. Geil, B.W. Schmidt, B.R. Rogers, and S.J. Rosenthal, Mater. Sci. Eng. B 170, 117 (2010).

    Article  Google Scholar 

  6. A. Akkari, M. Reghima, C. Guasch, and N. Kamoun-Turki, J. Mater. Sci. 47, 1365 (2012).

    Article  Google Scholar 

  7. M. Reghima, A. Akkari, M. Castagné, and N. Kamoun-Turki, J. Renew. Sustain. Energy 4, 011602 (2012).

    Article  Google Scholar 

  8. K. Santhosh Kumar, C. Manoharan, S. Dhanapandian, and A. Gowri Manohari, Spectrochim. Acta Part A 115, 840 (2013).

    Article  Google Scholar 

  9. S.S. Hegde, A.G. Kunjomana, M. Prashantha, C. Kumar, and K. Ramesh, Thin Solid Films 545, 543 (2013).

    Article  Google Scholar 

  10. K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M.J. Aziz, M.A. Scarpulla, and Tonio Buonassisi, Thin Solid Films 519, 7421 (2011).

    Article  Google Scholar 

  11. L.L. Cheng, M.H. Liu, M.X. Wang, S.C. Wang, G.D. Wang, Q.Y. Zhoua, and Z.Q. Chen, J. Alloy. Compd. 545, 122 (2012).

    Article  Google Scholar 

  12. D. Avellaneda, M.T.S. Nair, and P.K. Nair, J. Electrochem. Soc. D517, 155 (2008).

    Google Scholar 

  13. C. Gao, H. Shen, L. Sun, and Z. Shen, Mater. Lett. 65, 1413 (2011).

    Article  Google Scholar 

  14. C. Gao and H. Shen, Thin Solid Films 520, 3523 (2012).

    Article  Google Scholar 

  15. A. Akkari, C. Guasch, and N. Kamoun-Turki, J. Alloy. Compd. 490, 180 (2010).

    Article  Google Scholar 

  16. A. Akkari, M. Reghima, C. Guasch, and N. Kamoun-Turki, Adv. Mater. Res. 324, 101 (2011).

    Article  Google Scholar 

  17. M. Reghima, A. Akkari, C. Guasch, M. Castagné, and N. Kamoun-Turki, J. Renew. Sustain. Energy 5, 063109 (2013).

    Article  Google Scholar 

  18. S.C. Ray, M.K. Karanjai, and D. Das Gupta, Thin Solid Films 350, 72 (1999).

    Article  Google Scholar 

  19. G.H. Yue, W. Wang, L.S. Wang, X. Wang, P.X. Yan, Y. Chen, and D.L. Peng, J. Alloy. Compd. 474, 445 (2009).

    Article  Google Scholar 

  20. D. Avellaneda, G. Delgado, M.T.S. Nair, and P.K. Nair, Thin Solid Films 515, 5771 (2007).

    Article  Google Scholar 

  21. P.K. Nair, M.T.S. Nair, R.A. Zingaro, and E.A. Meyers, Thin Solid Films 239, 85 (1994).

    Article  Google Scholar 

  22. N.R. Mathews, C. ColínGarcía, and I.Z. Torres, Mater. Sci. Semicond. Process. 16, 29 (2013).

    Article  Google Scholar 

  23. H. Jie, S. Ying Cheng, Xin-Kun Wu, and Yong-Li Yang, Nat Sci 2, 197 (2010).

    Google Scholar 

  24. L.A. Burton and A. Walsh, J. Phys. Chem. C. 116, 2462 (2012).

  25. M.G. Sandoval-Paz, M. Sotelo-Lerma, J.J. Valenzuela-Jàuregui, M. Flores-Acosta, and R. Ramrez- Bon, Thin Solid Films 472, 5 (2005).

    Article  Google Scholar 

  26. N. Revathi, P. Prathap, R.W. Miles, and K.T. Ramakrishna Reddy, Sol. Energy Mater. Sol. Cells 94, 1484 (2010).

    Article  Google Scholar 

  27. B. Ghosh, R. Bhattacharjee, P. Banerjee, and S. Das, Appl. Surf. Sci. 257, 3670 (2011).

    Article  Google Scholar 

  28. O.E. Ogah, K. Ramakrishna Reddy, G. Zoppi, I. Forbes, and R.W. Miles, Thin Solid Films 519, 7425 (2011).

    Article  Google Scholar 

  29. M. Devika, N. Koteeswara Reddy, K. Ramesh, K.R. Gunasekhar, G. Esr, and k Ramakrishna Reddy, Semicond. Sci. Technol. 21, 1125 (2006).

    Article  Google Scholar 

  30. H. Mahfoz Kotb, M.A. Dabban, A.Y. Abdel-latif, and M.M. Hafiz, J. Alloy. Compd. 512, 115 (2012).

    Article  Google Scholar 

  31. Y. Shi, F. Xue, C. Li, Q. Zhao, Z. Qu, and X. Li, Appl. Surf. Sci. 258, 7465 (2012).

    Article  Google Scholar 

  32. A. Tanusevesky, Semicond. Sci. Technol. 18, 501 (2003).

    Article  Google Scholar 

  33. J.P. Filliard, J. Gasiot, J. Jimenez, L.F. Sanz, and J.A. Desaja, J. Electrost. 3, 133 (1997).

    Article  Google Scholar 

  34. N.A. Zeenath, P.K.V. Pillai, K. Bindu, M. Lakshmi, and K.P. Vijayakumar, J. Mater. Sci. 35, 2619 (2000). doi:10.1023/A:1004783517595.

    Article  Google Scholar 

  35. E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, and C. Gumus, Appl. Surf. Sci. 257, 1189 (2010).

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Pr. Michel Castagné for helpful discussions and comments on the TSC results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Reghima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reghima, M., Akkari, A., Guasch, C. et al. Structure, Surface Morphology, and Optical and Electronic Properties of Annealed SnS Thin Films Obtained by CBD. J. Electron. Mater. 43, 3138–3144 (2014). https://doi.org/10.1007/s11664-014-3269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3269-0

Keywords

Navigation