Skip to main content
Log in

Novel metallurgical process for titanium production

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, a consumable anode composed of a solid solution of titanium carbide and titanium monoxide was prepared via carbothermic reduction of TiO2. Upon electrolysis, the anode fed Ti2+ into solution and carbon monoxide was generated; no excess carbon remained to contaminate the melt. On the cathode, high-purity titanium (>99.9%) was produced. Our results suggest anode and cathode current efficiencies of 93.5% and 89% respectively, indicating that the method is viable and extremely cost-effective, potentially dropping the cost of titanium to near that of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Kroll: The production of ductile titanium. Trans. Am. Electrochem. Soc. 78, 35 (1940).

    Article  Google Scholar 

  2. F.R. Clayton, G. Mamantov, and D.L. Manning: Electrochemical studies of titanium in molten fluorides. J. Electrochem. Soc. 120, 1193 (1973).

    Article  CAS  Google Scholar 

  3. D. Wei, M. Okido, and T. Oki: Characteristics of titanium deposits by electrolysis in molten chloride-fluoride mixture. J. Appl. Electrochem. 24, 923 (1994).

    Article  CAS  Google Scholar 

  4. T. Oishi, H. Kawamura, and Y. Ito: Formation and size control of titanium particles by cathode discharge electrolysis of molten chloride. J. Appl. Electrochem. 32, 819 (2002).

    Article  CAS  Google Scholar 

  5. F. Lantelme, K. Kuroda, and A. Barhoun: Electrochemical and thermodynamic properties of titanium chloride solutions in various alkali chloride mixtures. Electrochim. Acta 44, 421 (1998).

    Article  CAS  Google Scholar 

  6. F. Lantelme and A. Salmi: Electrochemistry of titanium in NaCl–KCl mixture and influence of dissolved fluoride ions. J. Electrochem. Soc. 142, 3451 (1995).

    Article  CAS  Google Scholar 

  7. D.R. Sadoway: Electrochemical processing of refractory metals. JOM 43, 15 (1995).

    Article  Google Scholar 

  8. N.A. Fried, K.G. Rhoads, and D.R. Sadoway: Transference number measurements of TiO2-BaO melts by stepped-potential chronoamperometry. Electrochim. Acta 46, 3351 (2001).

    Article  CAS  Google Scholar 

  9. G.Z. Chen, D.J. Fray, and T.W. Farthing: Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407, 361 (2000).

    Article  CAS  Google Scholar 

  10. D.J. Fray: Emerging molten salt technologies for metals production. JOM 53, 26 (2001).

    Article  CAS  Google Scholar 

  11. G.Z. Chen and D.J. Fray: Electro-deoxidation of metal oxides, in Light Metals, edited by J.L. Anjier (2001), p. 1147.

  12. G.Z. Chen and D.J. Fray: Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride. J. Electrochem. Soc. 149, E445 (2002).

    Article  Google Scholar 

  13. S.L. Wang and Y.J. Li: Reaction mechanism of direct electro-reduction of titanium dioxide in molten calcium chloride. J. Electroanal. Chem. 571, 37 (2004).

    Article  CAS  Google Scholar 

  14. T.H. Okabe, M. Nakamura, T. Oishi, and K. Ono: Electrochemical deoxidation of titanium. Metall. Trans. B 24, 449 (1993).

    Article  Google Scholar 

  15. K. Ono and R.O. Suzuki: A new concept for producing Ti sponge: Caciothermic reduction. JOM 54, 59 (2002).

    Article  CAS  Google Scholar 

  16. T.H. Okabe, T. Oishi, and K. Ono: Deoxidation of titanium aluminide by Ca–Al alloy under controlled aluminum activity. Metall. Trans. B 23, 583 (1992).

    Article  Google Scholar 

  17. R.O. Suzuki: Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. J. Phys. Chem. Solids 66, 461 (2005).

    Article  CAS  Google Scholar 

  18. J.R. Myron and P. Palmerton: Electrorefining metallic titanium U.S. Patent No. 2 939 823 (1960).

    Google Scholar 

  19. B.N. Popov, M.C. Kimble, and R.E. White: Electrochemical behaviour of titanium(II) and titanium(III) compounds in lithium chloride/potassium chloride eutectic melts. J. Appl. Electrochem. 21, 351 (1991).

    Article  CAS  Google Scholar 

  20. E. Wainer: Cell feed material for the production of titanium U.S. Patent No. 2 868 703 (1959).

    Google Scholar 

  21. E. Wainer and C. Heights: Ohio: Production of titanium U.S. Patent No. 2 722 509 (1955).

    Google Scholar 

  22. J.H. Christle, J.A. Turner, and R.A. Osteryoung: Square wave voltammetry at the dropping mercury electrode: Theory. Anal. Chem. 49, 1899 (1977).

    Article  Google Scholar 

  23. S.I. Tokumoto, E. Tanaka, T. Kikuchi, K. Ogisu, and T. Tsumori: Method of adjust a fused salt electrolytic bath U.S. Patent No. 4 113 582 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmin Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, S., Zhu, H. Novel metallurgical process for titanium production. Journal of Materials Research 21, 2172–2175 (2006). https://doi.org/10.1557/jmr.2006.0268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0268

Navigation