Skip to main content
Log in

Anisotropic nanomechanical properties of Nephila clavipes dragline silk

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Spider silk is a material with unique mechanical properties under tension. In this study, we explore the anisotropic mechanical properties of spider silk using instrumented indentation. Both quasistatic indentation and dynamic stiffness imaging techniques were used to measure the mechanical properties in transverse and longitudinal sections of silk fibers. Quasistatic indentation yielded moduli of 10 ± 2 GPa in transverse sections and moduli of 6.4 ± 0.5 GPa in longitudinal sections, demonstrating mechanical anisotropy in the fiber. This result was supported by dynamic stiffness imaging, which also showed the average reduced modulus measured in the transverse section to be slightly higher than that of the longitudinal section. Stiffness imaging further revealed an oriented microstructure in the fiber, showing microfibrils aligned with the drawing axis of the fiber. No spatial distribution of modulus across the silk sections was observed by either quasistatic or stiffness imaging mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Gosline, M.E. Demont, M.W. Denny: The structure and properties of spider silk. Endeavour 10, 37 (1986).

    Article  Google Scholar 

  2. M.B. Hinman, J.A. Jones, R.V. Lewis: Synthetic spider silk: A modular fiber. Trends Biotechnol. 18, 374 (2000).

    Article  CAS  Google Scholar 

  3. F. Vollrath, D.P. Knight: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).

    Article  CAS  Google Scholar 

  4. R.V. Lewis: Spider silk–The unraveling of a mystery. Acc. Chem. Res. 25, 392 (1992).

    Article  CAS  Google Scholar 

  5. E. Bini, D.P. Knight, D.L. Kaplan: Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335, 27 (2004).

    Article  CAS  Google Scholar 

  6. J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage: The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295 (1999).

    CAS  Google Scholar 

  7. D.T. Grubb, L.W. Jelinski: Fiber morphology of spider silk: The effects of tensile deformation. Macromolecules 30, 2860 (1997).

    Article  CAS  Google Scholar 

  8. K. Augsten, P. Mühlig, C. Herrmann: Glycoproteins and skin-core structure in Nephila clavipes spider silk observed by light and electron microscopy. Scanning 22, 12 (2000).

    Article  CAS  Google Scholar 

  9. P. Poza, J. Perez-Rigueiro, M. Elices, J. Llorca: Fractographic analysis of silkworm and spider silk. Eng. Fract. Mech. 69, 1035 (2002).

    Article  Google Scholar 

  10. J. Perez-Rigueiro, M. Elices, J. Llorca, C. Viney: Tensile properties of Argiope trifasciata drag line silk obtained from the spider’s web. J. Appl. Polym. Sci. 82, 2245 (2001).

    Article  CAS  Google Scholar 

  11. S. Frische, A.B. Maunsbach, F. Vollrath: Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy. J. Microscopy—Oxford. 189, 64 (1998).

    Article  CAS  Google Scholar 

  12. T.A. Blackledge, J.E. Swindeman, C.Y. Hayashi: Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. J. Exp. Biol. 208, 1937 (2005).

    Article  Google Scholar 

  13. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen, H. Lu, J. Richmond, D.L. Kaplan: Silk-based biomaterials. Biomaterials 24, 401 (2003).

    Article  CAS  Google Scholar 

  14. P.M. Cunniff, S.A. Fossey, M.A. Auerbach, J.W. Song: Mechanical properties of major ampullate gland silk fibers extracted from Nephila lavipes spiders, in Silk Polymers: Materials Science and Biotechnology, edited by D.L. Kaplan, W.W. Adams, B. Farmer, and C. Viney (American Chemical Society, Washington, DC, 1994), pp. 234–251.

  15. F. Vollrath, B. Madsen, Z.Z. Shao: The effect of spinning conditions on the mechanics of a spider’s dragline silk. Proc. R. Soc. London, B: Biol. Sci. 268, 2339 (2001).

    Article  CAS  Google Scholar 

  16. L.D. Miller, S. Putthanarat, R.K. Eby, W.W. Adams: Investigation of the nanofibrillar morphology in silk fibers by small angle x-ray scattering and atomic force microscopy. Int. J. Biol. Macromol. 24, 159 (1999).

    Article  CAS  Google Scholar 

  17. S.F.Y Li, A.J. McGhie, S.L. Tang: New internal structure of spider dragline silk revealed by atomic-force microscopy. Biophys. J. 66, 1209 (1994).

    Article  CAS  Google Scholar 

  18. P.M. Cunniff, S.A. Fossey, M.A. Auerbach, J.W. Song, D.L. Kaplan, W.W. Adams, R.K. Eby, D.V. Mahoney, D.L. Vezie: Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym. Adv. Technol. 5, 401 (1994).

    Article  CAS  Google Scholar 

  19. Y. Yang, X. Chen, Z.Z. Shao, P. Zhou, D. Porter, D.P. Knight, F. Vollrath: Toughness of spider silk at high and low temperatures. Adv. Mater. 17, 84 (2005).

    Article  Google Scholar 

  20. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  21. S.A.S Asif, K.J. Wahl, R.J. Colton, O.L. Warren: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192 (2001).

    Google Scholar 

  22. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985), p. 452.

    Google Scholar 

  23. Y.L. Wang, C.Y. Yue, K.C. Tam, X. Hue: Relationship between processing, microstructure, and mechanical properties of injection molded thermotropic LCP. J. Appl. Polym. Sci. 88, 1713 (2003).

    CAS  Google Scholar 

  24. M. Bonner, L.S. Saunders, I.M. Ward, G.W. Davies, M. Wang, K.E. Tanner, W. Bonfield: Anisotropic mechanical properties of oriented HAPEX (TM). J. Mater. Sci. 37, 325 (2002).

    CAS  Google Scholar 

  25. R.K. Roeder, M.M. Sproul, C.H. Turner: Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J. Biomed. Mater. Res. A 67A, 801 (2003).

    CAS  Google Scholar 

  26. J.G. Swadener, J.Y. Rho, G.M. Pharr: Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J. Biomed. Mater. Res. 57, 108 (2001).

    Article  CAS  Google Scholar 

  27. J.J. Vlassak, W.D. Nix: Indentation modulus of elastically anisotropic half-spaces. Philos. Mag. A Phys. Condens. Matter Struct. Def. Mech. Prop. 67, 1045 (1993).

    Google Scholar 

  28. B.O. Swanson, T.A. Blackledge, J. Beltran, C.Y. Hayashi: Variations in the material properties of spider dragline silk across species. Appl. Phys. Mater. Sci. Proc. 82, 213 (2006).

    Article  CAS  Google Scholar 

  29. B.A. Lawrence, C.A. Vierra, A.M.F Mooref: Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5, 689 (2004).

    Article  CAS  Google Scholar 

  30. S. Putthanarat, P. Tapadia, S. Zarkoob, L.D. Miller, R.K. Eby, W.W. Adams: The color of dragline silk produced in captivity by the spider Nephila clavipes. Polym. 45, 1933 (2004).

    Article  CAS  Google Scholar 

  31. D.M. Ebenstein, J.H. Park, D.L. Kaplan, and K.J. Wahl: Nanomechanical and microstructural properties of Bombyx mori silk films, in Mechanical Properties of Bioinspired and Biological Materials edited by C. Viney, K. Katti, F.J. Ulm, and C. Hellmich (Mater. Res. Soc. Symp. Proc. 844, Warrendale, PA, 2005), Y2.2/R2.2, p. 107.

  32. D.B. Zax, D.E. Armanios, S. Horak, C. Malowniak, Z.T. Yang: Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. Biomacromolecules 5, 732 (2004).

    Article  CAS  Google Scholar 

  33. B. Madsen, F. Vollrath: Mechanics and morphology of silk drawn from anesthetized spiders. Naturwissenschaften 87, 148 (2000).

    Article  CAS  Google Scholar 

  34. G.R. Plaza, G.V. Guinea, J. Perez-Rigueiro, M. Elices: Thermo-hygro-mechanical behavior of spider dragline silk: Glassy and rubbery states. J. Polym. Sci., Part B: Polym. Phys. 44, 994 (2006).

    Article  CAS  Google Scholar 

  35. M.J. Mayo, W.D. Nix: A micro-indentation study of superplasticity in Pb, Sn, and Sn–38 wt% Pb. Acta Metall. 36, 2183 (1988).

    Article  CAS  Google Scholar 

  36. F. Vollrath, T. Holtet, H.C. Thogersen, S. Frische: Structural organization of spider silk. Proc. R. Soc. London, B: Biol. Sci. 263, 147 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn J. Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebenstein, D.M., Wahl, K.J. Anisotropic nanomechanical properties of Nephila clavipes dragline silk. Journal of Materials Research 21, 2035–2044 (2006). https://doi.org/10.1557/jmr.2006.0246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0246

Navigation