Skip to main content
Log in

Variation in the material properties of spider dragline silk across species

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Spiders produce high performance fibers that compare favorably with the best manmade fibers in strength and toughness. The amino acid sequences of silk proteins have been determined for a number of silk types and species, revealing extensive variation. This variation in sequence is hypothesized to confer different material properties. However, the material properties of silk have been characterized from only a few ecologically similar species, even though spiders are extremely diverse. Using a Nano Bionix® tensile tester, we measured mechanical properties of one type of silk, the dragline, from a broad sample of spider species. These taxa included orb-weavers and representatives of other lineages of true spiders that do not spin aerial capture webs. We found that all of the species sampled produce high-performance dragline fibers, suggesting that the remarkable properties of dragline silk predate the origin of the aerial orb-web. However, we report significant variation in all of the material properties measured. Furthermore, material properties tend not to be correlated, implying that different properties may have been selected upon in different spider lineages. We suggest that the spectrum of dragline silk sequences and material properties that have been produced over evolutionary time provides a rich resource for the design of biomimetic silk fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denny M (1976) J. Exp. Biol. 65:483

    Google Scholar 

  2. Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) J. Exp. Biol. 202:3295

    Google Scholar 

  3. Gatesy J, Hayashi CY, Motriuk D, Woods J, Lewis RV (2001) Science 291:2603

    Article  ADS  Google Scholar 

  4. Brandwood A (1985) J. Exp. Biol. 116:141

    Google Scholar 

  5. Xu M, Lewis RV (1990) Proc. Nat. Acad. Sci. USA 87:7120

    Article  ADS  Google Scholar 

  6. Hinman MB, Lewis RV (1992) J. Biol. Chem. 267:19320

    Article  Google Scholar 

  7. Guinea GV, Elices M, Real JI, Gutiérrez S, Pérez-Rigueiro J (2005) J. Exp. Zool. 303A:37

    Article  Google Scholar 

  8. Vollrath F, Holtet T, Thogersen HC, Frische S (1996) Proc. Roy. Soc. Lond. B 263:147

    Article  ADS  Google Scholar 

  9. Stauffer SL, Coguill SL, Lewis RV (1994) J. Arachnol. 22:5

    Google Scholar 

  10. Köhler T, Vollrath F (1995) J. Exp. Zool. 271:1

    Article  Google Scholar 

  11. Moore AMF, Tran K (1999) Int. J. Biol. Macromol. 24:277

    Article  Google Scholar 

  12. Pérez-Rigueiro J, Elices M, Viney C (2001) J. Appl. Polym. Sci. 82:2245

    Article  Google Scholar 

  13. Coddington JA, Giribet G, Harvey MS, Prendini L, Walter DE (2004) In: Assembling the tree of life, edited by Cracraft J, Donoghue MJ. Oxford University Press, New York

    Google Scholar 

  14. Eberhard WG (1990) Ann. Rev. Ecol. System. 21:341

    Article  Google Scholar 

  15. Craig CL (1987) Biol. J. Linn. Soc. 30:135

    Article  Google Scholar 

  16. Madsen B, Shao ZZ, Vollrath F (1999) Int. J. Biol. Macromol. 24:301

    Article  Google Scholar 

  17. Opell BD, Bond JE (2001) Evol. Ecol. Res. 3:567

    Google Scholar 

  18. Blackledge TA, Swindeman JE, Hayashi CY (2005) J. Exp. Biol. 208:1937

    Article  Google Scholar 

  19. Blackledge TA, Cardullo RA, Hayashi CY (2005) Invertebr. Biol. 124:165

    Article  Google Scholar 

  20. Garrido MA, Elices M, Viney C, Pérez-Rigueiro J (2002) Polymer 43:4495

    Article  Google Scholar 

  21. Tian MZ, Liu CZ, Lewis RV (2004) Biomacromolecules 5:675

    Article  Google Scholar 

  22. Hayashi CY, Shipley NH, Lewis RV (1999) Int. J. Biol. Macromol. 24:271

    Article  Google Scholar 

  23. Fedič R, Žurovec M, Sehnal F (2003) J. Biol. Chem. 278:35255

    Article  Google Scholar 

  24. Termonia Y (1994) Macromolecules 27:7378

    Article  ADS  Google Scholar 

  25. Lin LH, Edmonds DT, Vollrath F (1995) Nature 373:146

    Article  ADS  Google Scholar 

  26. Osaki S (1999) Int. J. Biol. Macromol. 24:283

    Article  Google Scholar 

  27. Work RW (1978) Trans. Am. Microsc. Soc. 97:180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.O. Swanson.

Additional information

PACS

87.14.Ee; 87.15.La

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swanson, B., Blackledge, T., Beltrán, J. et al. Variation in the material properties of spider dragline silk across species. Appl. Phys. A 82, 213–218 (2006). https://doi.org/10.1007/s00339-005-3427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3427-6

Keywords

Navigation