Skip to main content
Log in

Example of microprocessing in a natural polymeric fiber: Role of reeling stress in spider silk

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Spider silk fibers were obtained by the monitored forced silking method. This procedure allows measurement of the silking force during the process and retrieving the fibers so their tensile behavior can be characterized. Silking conditions, including the reeling speed and the use of an anaesthetising gas, were varied to ascertain their influence on the tensile properties of the silk. In all cases, it was found that the tensile properties are determined by the silking stress, obtained by dividing the silking force by the diameter of the fiber. This suggests that the sophisticated spinning system of the spider can be characterized essentially by a single parameter, which controls the properties of spider silk almost independently of the reeling conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Structural Biological Materials edited by M. Elices (Pergamon Press, Amsterdam, The Netherlands, 2000).

    Google Scholar 

  2. D.L. Kaplan, S.J. Lombardi, W.S. Muller, S.A. Fossey: Silks, in Biomaterials, Novel Materials from Biological Sources edited by D. Byrom (Stockton Press, New York, 1991), pp. 1–53.

  3. Silk Polymers, Materials Science and Biotechnology edited by D. Kaplan, W.W. Adams, B. Farmer, and C. Viney (American Chemical Society, Washington, DC, 1994).

    Google Scholar 

  4. M. Elices, J. Pérez-Rigueiro, G.R. Plaza, G.V. Guinea: Finding inspiration in Argiope trifasciata silk fibers. J. Mater. 57, 60 (2005).

    CAS  Google Scholar 

  5. R.B. Marsh, L. Corey, L. Pauling: Structure of silk. Biochim. Biophys. Acta 16, 1 (1955).

    Article  CAS  Google Scholar 

  6. A.H. Simmons, C.A. Michal, L.W. Jelinski: Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84 (1996).

    Article  CAS  Google Scholar 

  7. J.D. van Beek, J. Kümmerlen, F. Vollrath, B.H. Meier: Supercontracted spider dragline silk: A solid-state NMR study of the local structure. Int. J. Biol. Macromol. 24, 173 (1999).

    Article  Google Scholar 

  8. J.W. Jelinski, A. Blye, O. Liivak, C. Michal, G. LaVerde, A. Seidel, N. Shah, Z. Yang: Orientation, structure, wet-spinning and molecular basis for supercontraction of spider dragline silk. Int. J. Biol. Macromol. 24, 197 (1999).

    Article  CAS  Google Scholar 

  9. H. Zhou and Y. Zhang: Hierarchical chain model of spider silk capture silk elasticity. Phys. Rev. Lett. 94 028104 (2005).

    Article  Google Scholar 

  10. K. Kerkam, C. Viney, D. Kaplan, S. Lombardi: Liquid crystallinity of natural silk secretions. Nature 349, 596 (1991).

    Article  CAS  Google Scholar 

  11. F. Vollrath, D.P. Knight: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).

    Article  CAS  Google Scholar 

  12. H.J. Jin, D.L. Kaplan: Mechanisms of silk processing in insects and spiders. Nature 424, 1057 (2003).

    Article  CAS  Google Scholar 

  13. A. Lazaris, S. Arcidiacono, Y. Huang, J.F. Zhou, F. Duguay, N. Chretien, E.A. Welsh, J.W. Soares, C.N. Karatzas: Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472 (2002).

    Article  CAS  Google Scholar 

  14. M. Xu, R.V. Lewis: Structure of a protein superfiber: Spider dragline silk. Proc. Natl. Acad. Sci. USA 87, 7120 (1990).

    Article  CAS  Google Scholar 

  15. J. Gatesy, C. Hayashi, D. Motriuk, J. Woods, R. Lewis: Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291, 2603 (2001).

    Article  CAS  Google Scholar 

  16. B. Madsen, Z.Z. Shao, F. Vollrath: Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual. Int. J. Biol. Macromol. 24, 301 (1999).

    Article  CAS  Google Scholar 

  17. M.A. Garrido, M. Elices, C. Viney, J. Pérez-Rigueiro: Active control of spider silk strength: Comparison of drag line spun on vertical and horizontal surfaces. Polymer 43, 1537 (2002).

    Article  CAS  Google Scholar 

  18. K.B. Guess, C. Viney: Thermal analysis of major ampullate (drag line) spider silk: The effect of spinning rate on tensile modulus. Thermochim. Acta 315, 61 (1998).

    Article  CAS  Google Scholar 

  19. B. Madsen, F. Vollrath: Mechanics and morphology of silk drawn from anesthetized spiders. Naturwissenschaften 87, 148 (2000).

    Article  CAS  Google Scholar 

  20. J. Pérez-Rigueiro, M. Elices, G. Plaza, J.I. Real, G.V. Guinea: The effect of the spinning forces on spider silk properties. J. Exp. Biol. 208, 2633 (2005).

    Article  Google Scholar 

  21. J. Pérez-Rigueiro, M. Elices, G.R. Plaza, J.I. Real, G.V. Guinea: The influence of anaesthesia on the tensile properties of spider silk. J. Exp. Biol. 209, 320 (2006).

    Article  Google Scholar 

  22. J. Pérez-Rigueiro, C. Viney, J. Llorca, M. Elices: Silkworm silk as an engineering material. J. Appl. Polym. Sci. 70, 2439 (1998).

    Article  Google Scholar 

  23. G.V. Guinea, M. Elices, J.I. Real, S. Gutiérrez, J. Pérez-Rigueiro: Reproducibility of the tensile properties of spider (Argiope trifasciata) silk obtained by forced silking. J. Exp. Zool. 303A, 37 (2005).

    Article  Google Scholar 

  24. J. Pérez-Rigueiro, M. Elices, J. Llorca, C. Viney: Tensile properties of Argiope trifasciata drag line silk obtained from the spider’s web. J. Appl. Polym. Sci. 82, 2245 (2001).

    Article  Google Scholar 

  25. J. Pérez-Rigueiro, M. Elices, G.V. Guinea: Controlled supercontraction tailors the tensile behaviour of spider silk. Polymer 44, 3733 (2003).

    Article  Google Scholar 

  26. F. Vollrath, B. Madsen, Z. Shao: The effect of spinning conditions on the mechanics of a spider’s dragline silk. Proc. R. Soc. London B: Biol. Sci. 268, 2339 (2001).

    Article  CAS  Google Scholar 

  27. C.S. Ortlepp, J.M. Gosline: Consequences of forced silking. Biomacromolecules 5, 727 (2004).

    Article  CAS  Google Scholar 

  28. Y. Termonia: Molecular modelling of the stress/strain behavior of spider dragline, in Structural Biological Materials edited by M. Elices (Pergamon Press, Amsterdam, The Netherlands, 2000), pp. 335–349.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elices.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elices, M., Guinea, G.V., Plaza, G.R. et al. Example of microprocessing in a natural polymeric fiber: Role of reeling stress in spider silk. Journal of Materials Research 21, 1931–1938 (2006). https://doi.org/10.1557/jmr.2006.0240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0240

Navigation