Skip to main content
Log in

Al2O3 scale development on iron aluminides

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure and phase of the Al2O3 scale that forms on an Fe3Al-based alloy Fe-28Al-5Cr (at.%) was investigated by transmission electron microscopy and photoluminescence spectroscopy. Oxidation was performed at 900 °C and 1000 °C for up to 190 min. Transmission electron microscopy revealed that single-layer scales were formed after short oxidation times. Electron diffraction was used to show that the scales are composed of nanoscale crystallites of the θ, γ, and α phases of alumina. Band-like structure was observed extending along three 120°-separated directions within the surface plane. Textured θ and γ grains were the main components of the bands, whereas mixed α and transient phases were found between the bands. Extended oxidation produced a double-layered scale structure with a continuous α layer at the scale/alloy interface and a γ/θ layer at the gas surface. The mechanism for the formation of Al2O3 scales on iron aluminide alloys is discussed and compared with that for nickel aluminide alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Brady, B.A. Pint, P.F. Tortorelli, I.G. Wright, R.J. Hanrahan Jr. High temperature oxidation and corrosion of intermetallics, in Corrosion and Environmental Degradation, Vol. 19, edited by M. Schutze (Materials Science and Technology, Wiley-VCH, New York, 2000) pp. 232–325.

    Google Scholar 

  2. J. Doychak, J.L. Smialek, T.E. Mitchell: Transient oxidation of single-crystal ß-NiAl. Metall. Trans. A 20A, 499 (1989).

    Article  CAS  Google Scholar 

  3. G.C. Rybicki, J.L. Smialek: Effect of the δ-a-Al2O3 transformation on the oxidation behavior of ß-NiAl + Zr. Oxid. Metals 31, 275 (1989).

    Article  CAS  Google Scholar 

  4. J.C. Yang, K. Nadarzinski, E. Schumann, M. Rühle: Electron microscopy studies of NiAl/?-Al2O3 interface. Scripta Met. 33, 1043 (1995).

    Article  CAS  Google Scholar 

  5. J.C. Yang, E. Schumann, I. Levin, M. Rühle: Transient oxidation of NiAl. Acta Metall. 46, 2195 (1998).

    CAS  Google Scholar 

  6. J.L. Smialek, J. Doychak, D.J. Gaydosh: Oxidation behavior of FeAl + Hf, Zr, B. Oxid. Metals 34, 259 (1990).

    Article  CAS  Google Scholar 

  7. J.D. Kuenzly, D.L. Douglass: Oxidation mechanism of Ni3Al containing yttrium. Oxid. Metals 8, 139 (1974).

    Article  CAS  Google Scholar 

  8. J. Doychak, M. Rühle: TEM studies of oxidized NiAl and Ni3Al cross sections. Oxid. Metals 31, 431 (1989).

    Article  CAS  Google Scholar 

  9. E. Schumann, M. Rühle: Microstructural observation on the oxidation of ε-Ni3Al at high oxygen partial pressure. Acta Metall. Mater. 42, 1481 (1994).

    Article  CAS  Google Scholar 

  10. K.B. Alexander, K. Prussner, P.Y. Hou, P.F. Tortorelli Microstructure of alumina scales and coatings on zirconium-containing iron aluminide alloys, in Microscopy of Oxidation 3, edited by S.B. Newcomb and J.A. Little (The Institute of Metals, London, UK, 1997), pp. 246–264.

  11. D. Renusch, M. Grimsditch, I. Koshelev, B.W. Veal, P.Y. Hou: Strain determination in thermally grown alumina scales using fluorescence spectroscopy. Oxid. Metals 48, 471 (1997).

    Article  CAS  Google Scholar 

  12. W.C. Hagel: The oxidation of iron, nickel and cobalt-based alloys containing aluminum. Corrosion 21, 316 (1965).

    Article  CAS  Google Scholar 

  13. P.Y. Hou: Sulfur segregation to growing Al2O3/alloy interfaces. J. Mater. Sci. Lett. 19, 577 (2000).

    Article  CAS  Google Scholar 

  14. C.G. McKamey, P.J. Mazdiasz, G.M. Goodwin, T. Zacharia: Effects of alloying additions on the microstructures, mechanical properties and weldability of Fe3Al-based alloys. Mater. Sci. Eng. A A174,59 (1994).

    Article  CAS  Google Scholar 

  15. M. Tinker, P.A. Labun: Transmission electron microscopy of transverse sections through oxide scales on metals. Oxid. Metals 18, 27 (1982).

    Article  CAS  Google Scholar 

  16. Z.G. Yang, P.Y. Hou: Wrinkling behavior of alumina scale formed during isothermal oxidation of FeAl binary alloys. Mater. Sci. Eng. A 391, 1 (2005).

    Article  Google Scholar 

  17. Q. Ma, M.C. Shaw, M.Y. He, B.J. Dalgleish, D.R. Clarke, A.G. Evans: Stress redistribution in ceramic/metal multilayers containing cracks. Acta Metall. Mater. 43(6), 2137 (1995).

    Article  CAS  Google Scholar 

  18. D.M. Qingzhe, W. Lipkin, D.R. Clarke: Luminescence characterization of chromium-containing ?-alumina. J. Am. Ceram. Soc. 81, 3345 (1998).

    Article  Google Scholar 

  19. P.Y. Hou, A.P. Paulikas, B.W. Veal: Growth strains and stress relaxation in alumina scales during high temperature oxidation. Mater. Sci. Forum 461–464, 671 (2004).

    Article  Google Scholar 

  20. Y.H. Sohn, M.A. Dayananda: Interdiffusion, intrinsic diffusion and vacancy wind effect in Fe-Al alloys at 1000 °C. Scripta Mater. 40, 79 (1999).

    Article  CAS  Google Scholar 

  21. T. Ikeda, A. Almazouzi, H. Numakura, M. Koiwal, W. Sprengel, H. Nakajima: Single-phase interdiffusion in Ni3Al. Acta Mater. 46, 5369 (1998).

    Article  CAS  Google Scholar 

  22. P.Y. Hou, X.F. Zhang, R.M. Cannon: Impurity distribution in Al2O3 formed on an FeCrAl alloy. Scripta Mater. 51, 45 (2004).

    Article  Google Scholar 

  23. J.L. Smialek, R. Gibala: Structure of transient oxides formed on NiCrAl alloys. Metall. Trans. A 14A, 2143 (1983).

    Article  CAS  Google Scholar 

  24. K.F. McCarty: Imaging the crystallization and growth of oxide domains on the NiAl(110) surface. Surf. Sci. 474, L165 (2001).

    Article  CAS  Google Scholar 

  25. N. Fremy, V. Maurice, P. Marcus: Initial stages of growth of alumina on NiAl(001) at 1025 K. J. Am. Ceram. Soc. 86, 669 (2003).

    Article  CAS  Google Scholar 

  26. J.P. Pierce, K.F. McCarty: Self-assembly and dynamics of oxide nanorods on NiAl(110). Phys. Rev. B 71, 125428 (2005).

    Article  Google Scholar 

  27. D.M. Lipkin, H. Schaffer, F. Adar, D.R. Clarke: Lateral growth kinetics of a-alumina accompanying the formation of a protective scale on (111) NiAl during oxidation at 1100 °C. Appl. Phys. Lett. 70, 2550 (1997).

    Article  CAS  Google Scholar 

  28. V.K. Tolpygo, D.R. Clarke: Microstructural study of the ?-a transformation in alumina scales. Mater. High Temp. 17, 59 (2000).

    Article  CAS  Google Scholar 

  29. P.Y. Hou, A.P. Paulikas and B.W. Veal: Stress development and relaxation in Al2O3 during early stage oxidation of ß-NiAl. Mater. High Temp. (2006, in press).

    Google Scholar 

  30. A. Andoh, S. Taniguchi, T. Shibata: TEM observation of phase transformations of alumina scales formed on Al-deposited Fe-Cr-Al foils. Mater. Sci. Forum 369–372, 303 (2001).

    Article  Google Scholar 

  31. R. Klumpes, C.H.M. Maree, E. Schramm, J.H.W. de Wit: The influence of chromium on the oxidation of ß-NiAl at 1000 °C. Mater. Corrosion-Werkstoffe Korrosion 47, 619 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.F., Thaidigsmann, K., Ager, J. et al. Al2O3 scale development on iron aluminides. Journal of Materials Research 21, 1409–1419 (2006). https://doi.org/10.1557/jmr.2006.0172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0172

Navigation