Skip to main content
Log in

A study of indentation work in homogeneous materials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The work of indentation is investigated experimentally in this article. A method of using the elastic energy to extract the elastic modulus is proposed and verified. Two types of hardness related to the work of indentation are defined and examined: Hwtis defined as the total work required creating a unit volume of contact deformationand Hwp is defined as the plastic work required creating a unit volume of plastic deformation; experiments show that both hardness definitions are good choices for characterizing hardness. Several features that may provide significant insights in understanding indentation measurements are studied. These features mainly concern some scaling relationships in indentation measurements and the indentation size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Stilwell, D. Tabor: Elastic recovery of conical indentations. Proc. Phys. Soc. 78, 169 (1961).

    Article  Google Scholar 

  2. M.C. Shaw The fundamental basis of the hardness test, in The Science of Hardness Testing and Its Research Applications, edited by J.H. Westbrook and H. Conrad (ASM Symposium, Metals Park, OH, 1971), p. 2.

  3. A.M. Korsunsky, M.R. McGurk, S.J. Bull, T.F. Page: On the hardness of coated systems. Surf. Coat. Technol. 99, 171 (1998).

    Article  CAS  Google Scholar 

  4. J.R. Tuck, A.M. Korsunsky, S.J. Bull, R.I. Davidson: On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems. Surf. Coat. Technol. 137, 217 (2001).

    Article  CAS  Google Scholar 

  5. D. Beegan, S. Chowdhury, M.T. Laugier: Work of indentation methods for determining copper film hardness. Surf. Coat. Technol. 192, 57 (2005).

    Article  CAS  Google Scholar 

  6. M. Sakai: Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials. Acta Met. Mater. 41, 1751 (1993).

    Article  CAS  Google Scholar 

  7. M. Sakai: The Meyer hardness: A measure for plasticity? J. Mater. Res. 14, 3630 (1999).

    Article  CAS  Google Scholar 

  8. K. Zeng, C.H. Chiu: An analysis of load-penetration curves from instrumented indentation. Acta Mater. 49, 3539 (2001).

    Article  CAS  Google Scholar 

  9. S.V. Hainsworth, H.W. Chandler, T.F. Page: Analysis of nanoindentation load-displacement loading curves. J. Mater. Res. 11, 1987 (1996).

    Article  CAS  Google Scholar 

  10. G.M. Pharr, A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  11. H. Men, Z.Q. Hu, J. Xu: Bulk metallic glass formation in the Mg–Cu–Zn–Y system. Scripta Mater. 46, 699 (2002).

    Article  CAS  Google Scholar 

  12. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  13. W.C. Oliver, G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  14. B.N. Lucas, W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30A, 601 (1999).

    Article  CAS  Google Scholar 

  15. J. Malzbender, G. de With, J. Toonderden: The P-h2 relationship in indentation. J. Mater. Res. 15, 1209 (2000).

    Article  CAS  Google Scholar 

  16. A. Bolshakov, G.M. Pharr: Influence of pileup on the measurement of mechanical properties by load and depth-sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  17. W. Ni, Y.T. Cheng: Modeling conical indentation in homogeneous materials and in hard films on soft substrates. J. Mater. Res. 20, 521 (2005).

    Article  CAS  Google Scholar 

  18. Y.T. Cheng, C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91 (2004).

    Article  Google Scholar 

  19. M.A. Maneiro Garrido, J. Rodriguez: Pile-up effect on nanoindentation tests with spherical-conical tips. Scripta Mater. 52, 593 (2005).

    Article  Google Scholar 

  20. Y. Wang, D. Raabe, C. Kluber, F. Roters: Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 52, 2229 (2004).

    Article  CAS  Google Scholar 

  21. P.B. Coates, J.W. Andrews: A precise determination of the freezing point of copper. J. Phys. F: Met. Phys. 8, 277 (1978).

    Article  CAS  Google Scholar 

  22. http://environmentalchemistry.com/yogi/periodic/Cu.html. Last accessed July 30, 2005.

  23. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  24. S.W. Youn, C.G. Kang: FEA study on nanodeformation behaviors of amorphous silicon and borosilicate considering tip geometry for pit array fabrication. Mater. Sci. Eng. 390, 233 (2005).

    Article  Google Scholar 

  25. K.W. Xu, G.L. Hou, B.C. Hendrix, J.W. He, Y. Sun, S. Zheng, A. Bloyce, T. Bell: Prediction of nanoindentation hardness profile from a load-displacement curve. J. Mater. Res. 13, 3519 (1998).

    Article  CAS  Google Scholar 

  26. J. Mencik, M.V. Swain: Micro-indentation tests with pointed indenters. Mater. Forum 18, 277 (1994).

    CAS  Google Scholar 

  27. Y.T. Cheng, Z. Li, C.M. Cheng: Scaling relationships for indentation measurements. Philos. Mag. A 82, 1821 (2002).

    Article  CAS  Google Scholar 

  28. W.D. Nix, H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengxi Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M. A study of indentation work in homogeneous materials. Journal of Materials Research 21, 1363–1374 (2006). https://doi.org/10.1557/jmr.2006.0168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0168

Navigation