Skip to main content
Log in

Lanthanum molybdenum oxide: Low-temperature synthesis and characterization

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A recently developed fast oxide ion conductor, namely lanthanum molybdenum oxide (La2Mo2O9, LAMO), was synthesized instantaneously by a citrate-nitrate auto-ignition process at a fixed citrate to nitrate ratio of 0.3 and characterized by thermal analysis, x-ray diffraction, impedance spectroscopy, and thermal expansion measurements. Crystalline LAMO has formed instantaneously during the combustion process. The signature of the order-disorder transition of stoichiometric LAMO around 570 °C was evident from differential thermal analysis, differential scanning calorimetry electrical conductivity, and thermal expansion measurements. Though the in situ x-ray measurements did not indicate any clear evidence of a phase transition, a stepwise change in the lattice parameter near the vicinity of the transition temperature was apparent thereby confirming the phase transition to be of first order in nature. The thermal expansion coefficient of LAMO was calculated to be 13.92 × 10−6/°K at 950 °C. The present method formed phase pure LAMO instantaneously and produced sintered samples with high conductivity, namely, 0.052 S/cm at 800 °C and 0.08 S/cm at 950 °C compared to LAMO prepared through various other solution routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.C. Subbarao Zirconia—An overview in advances in ceramics, in Science and Technology of Zirconia I, Vol. 3, edited by A.H. Heuer and L.W. Hobbs (Am. Ceram. Soc., Columbus, OH, 1981), pp. 1–24.

    CAS  Google Scholar 

  2. H. Inaba, H. Tagawa: Ceria-based solid electrolytes. Solid State Ionics 83, 1 (1996).

    Article  CAS  Google Scholar 

  3. H.A. Harwig, A.G. Gerards: Electrical properties of the a, ß, ? and d phases of bismuth sesquioxides. J. Solid State Chem. 26, 265 (1978).

    Article  CAS  Google Scholar 

  4. T. Ishihara, H. Matsuda, Y. Takita: Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801 (1994).

    Article  CAS  Google Scholar 

  5. W. Grover, C. Dennis, V. Readey: Proton conductivity measurements in yttrium barium cerate by impedance spectroscopy. J. Am. Ceram. Soc. 85, 2637 (2002).

    Google Scholar 

  6. H. Abraham, J.C. Boivin, G. Mairesse, G. Nowogrocki: The BIMEVOX series: A new family of high performances oxide ion conductors. Solid State Ionics 40–41, 934 (1990).

    Article  Google Scholar 

  7. S.A. Kramer, H.L. Tuller: Semiconduction and mixed ionic-electronic conduction in nonstoichiometric oxides: Impact and control. Solid State Ionics 94, 63 (1997).

    Article  Google Scholar 

  8. S.A. Kramer, H.L. Tuller: A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82, 15 (1995).

    Article  CAS  Google Scholar 

  9. J.C. Boivin, G. Mairesse: Recent material developments in fast oxide ion conductors. Chem. Mater. 10, 2870 (1998).

    Article  CAS  Google Scholar 

  10. P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant: Designing fast oxide-ion conductors based on LAMO. Nature 404, 856 (2000).

    Article  CAS  Google Scholar 

  11. F. Goutenoire, O. Isnard, R. Retoux, P. Lacorre: Crystal structure of LAMO, a new fast oxide–ion conductor. Chem. Mater. 12, 2575 (2000).

    Article  CAS  Google Scholar 

  12. F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux, P. Lacorre: Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenum oxide LAMO. J. Mater. Chem. 11, 119 (2001).

    Article  CAS  Google Scholar 

  13. P. Lacorre, R. Retoux: First direct synthesis by high-energy ball milling of a new lanthanum molybdate. J. Solid State Chem. 132, 443 (1997).

    Article  CAS  Google Scholar 

  14. A. Arulraj, F. Goutenoire, M. Tabellout, O. Bohnke, P. Lacorre: Synthesis and characterization of the anionic conductor system LAMO-0.5xFx(x = 0.02–0.30). Chem. Mater. 14, 2492 (2002).

    Article  CAS  Google Scholar 

  15. X.P. Wang, F. Fang: Effects of Ca doping on the oxygen ion diffusion and phase transition in oxide ion conductor LAMO. Solid State Ionics 146, 185 (2002).

    Article  CAS  Google Scholar 

  16. X.P. Wang, Q.F. Fang, Z.S. Li, G.G. Zhang, Z.G. Yi: Dielectric relaxation studies of Bi-doping effects on the oxygen-ion diffusion in La2-xBixMo2O9 oxide-ion conductors. Appl. Phys. Lett. 81, 3434 (2002).

    Article  CAS  Google Scholar 

  17. J.A. Collado, M.A.G. Aranda, P. Cabeza, Oliver-P. Pastor, S. Bruque: Synthesis, structures, and thermal expansion of the La2W2- xMoxO9 series. J. Solid State Chem. 167, 80 (2002).

    Article  CAS  Google Scholar 

  18. Z.S. Khadasheva, N.U. Venskovskii, M.G. Safrenko, A.V. Mosunov, E.D. Politova, S.Y. Stefanovich: Synthesis and properties of La2(Mo1-xMx)2O9 (M = Nb,Ta) ionic conductors. Inorg. Mater. 38, 1168 (2002).

    Article  CAS  Google Scholar 

  19. S. Georges, F. Goutenoire, D. Altorfer, F. Sheptyakov, F. Fauth, E. Suard, P. Lacorre: Thermal, structural and transport properties of the fast oxide-ion conductors La2-xRxMo2O9 (R = Nd, Gd, Y). Solid State Ionics 161, 231 (2003).

    Article  CAS  Google Scholar 

  20. S. Georges, F. Goutenoire, Y. Laligant, P. Lacorre: Reducibility of fast oxide-ion conductors La2- xRxMo2-y Wy O9 (R = Nd,Gd). J. Mater. Chem. 13, 2317 (2003).

    Article  CAS  Google Scholar 

  21. S.A. Hayward, S.A.T. Redfern: Themodynamic nature of, and spontaneous strain below the cubic-monoclinic phase transition in LAMO. J. Phys.: Condens. Matter 16, 3571 (2004).

    CAS  Google Scholar 

  22. S. Basu, P.S. Devi, H.S. Maiti: A potential low-temperature oxide-ion conductor: La2-xBaxMo2O9. Appl. Phys. Lett. 85, 3486 (2004).

    Article  CAS  Google Scholar 

  23. R.A. Rocha, E.N.S. Muccillo: Synthesis and thermal decomposition of a polymericprecursor of the LAMO compound. Chem. Mater. 15, 4268 (2003).

    Article  CAS  Google Scholar 

  24. R. Subasri, H. Nafe, F. Aldinger: On the electronic and ionic-transport properties of LAMO. Mater. Res. Bull. 38, 1965 (2003).

    Article  CAS  Google Scholar 

  25. R. Subasri, D. Matusch, H. Nafe, F. Aldinger: Synthesis and characterization of (La1-x Mx)2Mo2O9-d; M = Ca+2, Sr+2 or Ba+2. J. Eur. Ceram. Soc. 24, 129 (2004).

    Article  CAS  Google Scholar 

  26. I.P. Marozau, D. Marrero-Lopez, A.L. Shaula, V.V. Kharton, E.V. Tsipis, P. Nunez, J.R. Frade: Ionic and electronic transport in stabilized ß-LAMO electrolytes. Electrochim. Acta 49, 3517 (2004).

    Article  CAS  Google Scholar 

  27. D. Marrero-López, J.C. Ruiz-Morales, P. Nunez, J.C.C. Abrantes, J.R. Frade: Synthesis and characterization of LAMO obtained from freeze-dried precursors. J. Solid State Chem. 177, 2378 (2004).

    Article  Google Scholar 

  28. C. Tealdi, G. Chiodelli, L. Malavasi, G. Flor: Effect of alkaline-doping on the properties of LAMO fast oxygen ion conductor. J. Mater. Chem. 14, 3553 (2004).

    Article  CAS  Google Scholar 

  29. S. Roy, A. Sharma Das, S.N. Roy, H.S. Maiti: Synthesis of YBa2Cu3O7-x powder by auto-ignition of citrate-nitrate gel. J. Mater. Res. 8, 2761 (1993).

    Article  CAS  Google Scholar 

  30. P.S. Devi, H.S. Maiti: A novel auto-ignited combustion process for the synthesis of Bi–Pb–Sr–Ca–Cu–O superconductor with a Tc(0)of 125 K. J. Solid State Chem. 109, 35 (1994).

    Article  CAS  Google Scholar 

  31. A. Chakraborty, P.S. Devi, S. Roy, H.S. Maiti: Low-temperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by an auto-ignition process. J. Mater. Res. 9, 986 (1994).

    Article  CAS  Google Scholar 

  32. A. Chakraborty, P.S. Devi, H.S. Maiti: Low temperature-temperature synthesis and some physical properties of barium substituted lanthanum manganite. J. Mater. Res. 10, 918 (1995).

    Article  CAS  Google Scholar 

  33. N. Chakraborty, H.S. Maiti: Chemical synthesis of barium zirconate titanate powder by an autocombustion technique. J. Mater. Chem. 6, 1169 (1996).

    Article  Google Scholar 

  34. R.D. Purohit, A.K. Tyagi: Auto-ignition synthesis of nanocrystalline BaTi4O9 powder. J. Mater. Chem. 12, 312 (2002).

    Article  CAS  Google Scholar 

  35. S. Basu, P.S. Devi, H.S. Maiti: Synthesis and properties of nanocrystalline ceria powders. J. Mater. Res. 19, 3162 (2004).

    Article  CAS  Google Scholar 

  36. P.S. Devi, Y. Lee, J. Margolis, J.B. Parise, S. Sampath, H. Herman, J.C. Hanson: Comparison of citrate-nitrate gel combustion and precursor plasama spray for the synthesis of yttrium aluminium garnet. J. Mater. Res. 17, 2846 (2002).

    Article  CAS  Google Scholar 

  37. M.H. Yu, P.S. Devi, L.H. Lewis, P. Gouma, J.B. Parise, R.J. Gambino: Towards a magnetic core–shell nanostructure: A novel composite made by a citrate–nitrate auto-ignition process. Mater. Sci. Eng. B 103, 262 (2003).

    Article  Google Scholar 

  38. X. Guo, P.S. Devi, B.G. Ravi, J.B. Parise, S. Sampath, J.C. Hanson: Phase evolution of yttrium aluminium garnet (YAG) in a citrate–nitrate gel combustion process. J. Mater. Chem. 14, 1288 (2004).

    Article  CAS  Google Scholar 

  39. S. Basu, P.S. Devi, H.S. Maiti: Nb-doped LAMO: A new material with high ionic conductivity. J. Electrochem. Soc. 152, A2143 (2005).

    Article  Google Scholar 

  40. Z.G. Yi, Q.F. Fang, X.P. Wang, G.G. Zhang: Dielectric relaxation studies on the submicron crystalline LAMO oxide-ion conductors. Solid State Ionics 160, 117 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sujatha Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Sujatha Devi, P., Maiti, H.S. et al. Lanthanum molybdenum oxide: Low-temperature synthesis and characterization. Journal of Materials Research 21, 1133–1140 (2006). https://doi.org/10.1557/jmr.2006.0135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0135

Navigation