Skip to main content
Log in

Hydrogen behavior in Mg+-implanted graphite

  • Rapid Communication
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A graphite wafer has been implanted with Mg+ to produce a uniform Mg concentration. Subsequent H+ implantation covered the Mg+-implanted and -unimplanted regions. Ion-beam analysis shows a higher H retention in graphite embedded with Mg than in regions without Mg. A small amount of H diffuses out of the H+-implanted graphite during thermal annealing at temperatures up to 300 °C. However, significant H release from the region implanted with Mg+ and H+ ions occurs at 150 °C; further release is also observed at 300 °C. The results suggest that there are efficient H trapping centers and fast pathways for H diffusion in the Mg+-implanted graphite, which may prove highly desirable for reversible H storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Schlapbach, A. Zuttel: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).

    Article  CAS  Google Scholar 

  2. B. Bogdanovic, G. Sandrock: Catalyzed complex metal hydrides. MRS Bull. 27, 712 (2002).

    Article  CAS  Google Scholar 

  3. A.J. Williamson, F.A. Reboredo, G. Galli: Chemisorption on semiconductor nanocomposites: A mechanism for hydrogen storage. Appl. Phys. Lett. 85, 2917 (2004).

    Article  CAS  Google Scholar 

  4. Workshop report chaired by M. Dresselhaus: Basic Research Needs for the Hydrogen Economy, Office of Science, U.S. Department of Energy, Washington, DC, May 13–15, 2003.

    Google Scholar 

  5. T. Noritake, M. Aoki, S. Towata, Y. Seno, Y. Hirose, E. Nishibori, M. Takata, M. Sakata: Chemical bonding of hydrogen in MgH2. Appl. Phys. Lett. 81, 2008 (2002).

    Article  CAS  Google Scholar 

  6. H. Imamura, S. Tabata, N. Shigetomi, Y. Takesue, Y. Sakata: Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium. J. Alloys Comp. 330–332, 579 (2002).

    Article  Google Scholar 

  7. M. Au Hydrogen storage properties of magnesium based nanostructured/amorphous composite materials in Materials and Technology for Hydrogen Economy, edited by G.A. Naeri, M. Nazri, R. Young, and P. Chen (Mater. Res. Soc. Symp. Proc. 801, Warrendale, PA, 2004). BB1.5, p. 41.

  8. A. Meldrum, R.F. Haglund Jr. L.A. Boatner, C.W. White: Nanocomposite materials formed by ion implantation. Adv. Mater. 13, 1431 (2001).

    Article  CAS  Google Scholar 

  9. C.M. Wang, S. Thevuthasan, V. Shutthanandan, A. Cavanagh, W. Jiang, L.E. Thomas, W.J. Weber: Microstructure of precipitated Au nanoclusters in MgO. J. Appl. Phys. 93, 6327 (2003).

    Article  CAS  Google Scholar 

  10. J.F. Ziegler, J.P. Biersack, U. Littmark: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985); see also http://www.srim.org/.

    Google Scholar 

  11. K. Morita, K. Ohtsuka, Y. Hasebe: Dynamic measurements of depth profiles of hydrogen implanted into graphite at elevated temperatures. J. Nucl. Mater. 162–164, 990 (1989).

    Article  Google Scholar 

  12. R. Siegele, J. Roth, B.M.U. Scherzer, S.J. Pennycook: Damage and deuterium trapping in highly-oriented pyrolytic graphite. J. Appl. Phys. 73, 2225 (1993).

    Article  CAS  Google Scholar 

  13. K. Katayama, M. Nishikawa: Release behavior of tritium from graphite material. Fusion Sci. Tech. 41, 53 (2002).

    Article  CAS  Google Scholar 

  14. Y. Chen, R. Gonzalez, K.L. Tsang: Diffusion of deuterium and hydrogen in rutile TiO2 crystals at low temperatures. Phys. Rev. Lett. 53, 1077 (1984).

    Article  CAS  Google Scholar 

  15. L. Belkbir, E. Joly, GéN. rard: Comparative study of the formation-decomposition mechanisms and kinetics in LaNi5 and magnesium reversible hydrides. Int. J. Hydrogen Energy 6, 285 (1981).

    Article  CAS  Google Scholar 

  16. K. Higuchi, K. Yamamoto, H. Kajioka, K. Toiyama, M. Honda, S. Orimo, H. Fujii: Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. J. Alloys Comp. 330–332, 526 (2002).

    Article  Google Scholar 

  17. B.L. Doyle, W.R. Wampler, D.K. Brice: Temperature dependence of H saturation and isotope exchange. J. Nucl. Mater. 103, 513 (1981).

    Article  CAS  Google Scholar 

  18. G. Compagnini, G. Baratta: Polarized Raman spectroscopy in ion irradiated graphite. Appl. Phys. Lett. 61, 1796 (1992).

    Article  CAS  Google Scholar 

  19. B.S. Elman, M. Shayegan, M.S. Dresselhaus, H. Mazurek, G. Dresselhaus: Structural characterization of ion-implanted graphite. Phys. Rev. B 25, 4142 (1982).

    Article  CAS  Google Scholar 

  20. A. Kaschner, H. Siegle, G. Kaczmarczyk, M. Strassburg, A. Hoffmann, C. Thomsen, U. Birkle, S. Einfeldt, D. Hommel: Local vibrational modes in Mg-doped GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 74, 3281 (1999).

    Article  CAS  Google Scholar 

  21. R. Cuscó, L. Artús, D. Pastor, F.B. Naranjo, E. Calleja: Local vibrational modes of H complexes in Mg-doped GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 84, 897 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Jiang.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Shutthanandan, V., Zhang, Y. et al. Hydrogen behavior in Mg+-implanted graphite. Journal of Materials Research 21, 811–815 (2006). https://doi.org/10.1557/jmr.2006.0121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0121

Navigation