Skip to main content
Log in

Encapsulant-Dependent Effects of Long-Term Low-Temperature Annealing on Interstitial Defects in Mg-Ion-Implanted GaN

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The encapsulant-dependent effects of long-term low-temperature annealing on defects in Mg-ion-implanted GaN were investigated using metal-oxide-semiconductor (MOS) diodes. Annealing was carried out at 600°C under nitrogen flow without or with a cap layer of Al2O3, SiO2, or SiN. For annealing at 600°C for 3 h, the capacitancevoltage characteristics of the Al2O3 cap annealed samples indicated the existence of acceptor-like defects, whereas those of the capless, SiO2 cap and SiN cap annealed samples exhibited bumps, which indicated the existence of a donor-like defect level at around 0.8 eV from the conduction band edge EC. A more distinct result was obtained for annealing at 600°C for 30 h. Namely, annealing of samples with the Al2O3 cap layer induced an acceptor-like defect level at EC−0.9 eV, whereas that with the SiN cap layer induced a donor-like defect level at EC−0.8 eV. Secondary ion mass spectroscopy and transmission electron microscopy studies revealed that interstitial Ga (Gai) in Mg-implanted GaN diffused into the Al2O3 cap layer but not into the SiN cap layer after annealing. Most likely, the detected EC−0.8 eV level can be assigned to interstitial Gai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Kachi, Recent progress of GaN power devices for automotive applications. Jpn. J. Appl. Phys. 53, 100210 (2014).

    Article  Google Scholar 

  2. H. Amano, Y Baines, E. Beam, M. Borga, T. Bouchet, P. R Chalker, M. Charles, K. J. Chen, N. Chowdhury, R. Chu, C. De Santi, M. M. De Souza, S. Decoutere, L. Di Cioccio, B. Eckardt, T. Egawa, P. Fay, J. J. Freedsman, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H Kawai, D. Kinzer, M. Kuball, A. Kumar, K. B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E. M. S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M. J. Uren, M. V. Hove, D. J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, Yuhao Zhang, The 2018 GaN power electronics roadmap. J. Phys. D, Appl. Phys. 51, 163001 (2018).

  3. D. Ueda, Power GaN devices. ed. M. Meneghini, G. Meneghesso, and E. Zanoni (New York: Springer, 2017), p. 1.

    Google Scholar 

  4. B.J. Baliga, Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 28, 074011 (2013).

    Article  Google Scholar 

  5. F. Schwierz, An electron mobility model for wurtzite GaN. Solid-State Electron. 49, 889 (2005).

    Article  CAS  Google Scholar 

  6. P.A. Alvi, S. Gupta, M.J. Siddiqui, G. Sharma, and S. Dalela, Modeling and simulation of GaN/Al0.3Ga0.7N new multilayer nano-heterostructure. Physica B 405, 2431 (2010).

    Article  CAS  Google Scholar 

  7. P.A. Alvi, S. Gupta, P. Vijay, G. Sharma, and M.J. Siddiqui, Affects of Al concentration on GaN/AlxGa1–xN newmodeled multilayer nano-heterostructure. Physica B 405, 3624 (2010).

    Article  CAS  Google Scholar 

  8. S. Gupta, F. Rahman, M.J. Siddiqui, and P.A. Alvi, Strain profile in nitride based multilayer nano-heterostructures. Physica B 411, 40 (2013).

    Article  CAS  Google Scholar 

  9. S. Ahmad, M.A. Raushan, S. Kumar, S. Dalela, M.J. Siddiqui, and P.A. Alvi, Modeling and simulation of GaN based QW LED for UV emission. Optik 158, 1334 (2018).

    Article  CAS  Google Scholar 

  10. S. Kaneki, J. Ohira, S. Toiya, Z. Yatabe, J.T. Asubar, and T. Hashizume, Highly-stable and low-state-density Al2O3/GaN interfaces using epitaxial n-GaN layers grown on free-standing GaN substrates. Appl. Phys. Lett. 109, 162104 (2016).

    Article  Google Scholar 

  11. T. Hashizume, S. Kaneki, T. Oyobiki, Y. Ando, S. Sasaki, and K. Nishiguchi, Effects of postmetallization annealing on interface properties of Al2O3/GaN structures. Appl. Phys. Express 11, 124102 (2018).

    Article  Google Scholar 

  12. T. Yamada, J. Ito, R. Asahara, K. Watanabe, M. Nozaki, T. Hosoi, T. Shimura, and H. Watanabe, Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers. Appl. Phys. Lett. 110, 261603 (2017).

    Article  Google Scholar 

  13. T. Yamada, D. Terashima, M. Nozaki, H. Yamada, T. Takahashi, M. Shimizu, A. Yoshigoe, T. Hosoi, T. Shimura, H. Watanabe, Controlled oxide interlayer for improving reliability of SiO2/GaN MOS devices. Jpn, J. Appl. Phys. 58, SCCD06 (2019).

  14. B.N. Feigelson, T.J. Anderson, M. Abraham, J.A. Freitas, J.K. Hite, C.R. Eddy, and F.J. Kub, Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN. J. Cryst. Growth 350, 21 (2012).

    Article  CAS  Google Scholar 

  15. T.J. Anderson, B.N. Feigelson, F.J. Kub, M.J. Tadjer, K.D. Hobart, M.A. Mastro, J.K. Hite, and C.R. Eddy, Activation of Mg implanted in GaN by multicycle rapid thermal annealing. Electron. Lett. 50, 197 (2014).

    Article  CAS  Google Scholar 

  16. J.D. Greenlee, T.J. Anderson, B.N. Feigelson, K.D. Hobart, and F.J. Kub, Characterization of an Mg-implanted GaN p–i–n diode. Phys. Status Solidi A 212, 2772 (2015).

    Article  CAS  Google Scholar 

  17. T.J. Anderson, J.D. Greenlee, B.N. Feigelson, J.K. Hite, K.D. Hobart, and F.J. Kub, Improvements in the annealing of Mg Ion implanted GaN and related devices. IEEE Trans. Semicond. Manuf. 29, 343 (2016).

    Article  Google Scholar 

  18. K. Nomoto, K. Takahashi, T. Oikawa, H. Ogawa, T. Nishimura, T. Mishima, H.G. Xing, and T. Nakamura, Ion Implantation into GaN and implanted GaN power transistors. ECS Trans. 69, 105 (2015).

    Article  CAS  Google Scholar 

  19. T. Oikawa, Y. Saijo, S. Kato, T. Mishima, and T. Nakamura, Formation of definite GaN p–n junction by Mg-ion implantation to n-GaN epitaxial layers grown on a high-quality free-standing GaN substrate. Nucl. Inst. Methods Phys. Res. B 365, 168 (2015).

    Article  CAS  Google Scholar 

  20. T. Niwa, T. Fujii, and T. Oka, High carrier activation of Mg ion-implanted GaN by conventional rapid thermal annealing. Appl. Phys. Express 10, 091002 (2017).

    Article  Google Scholar 

  21. T. Narita, T. Kachi, K. Kataoka, and T. Uesugi, Electric-field-induced simultaneous diffusion of Mg and H in Mg-doped GaN prepared using ultra-high-pressure annealing. Appl. Phys. Exp. 10, 016501 (2017).

    Article  Google Scholar 

  22. H. Sakurai, M. Omori, S. Yamada, Y. Furukawa, H. Suzuki, T. Narita, K. Kataoka, M. Horita, M. Bockowski, J. Suda, and T. Kachi, Highly effective activation of Mg-implanted p-type GaN by ultra-high-pressure annealing. Appl. Phys. Lett. 115, 142104 (2019).

    Article  Google Scholar 

  23. G. Alfieri, V.K. Sundaramoorthy, and R. Micheletto, Electrically active point defects in Mg implanted n-type GaN grown by metal-organic chemical vapor deposition. J. Appl. Phys. 123, 205303 (2018).

    Article  Google Scholar 

  24. M. Akazawa, N. Yokota, and K. Uetake, Detection of deep-level defects and reduced carrier concentration in Mg-ionimplanted GaN before high-temperature annealing. AIP Advances 8, 025310 (2018).

    Article  Google Scholar 

  25. M. Akazawa, K. Uetake, Impact of low-temperature annealing on defect levels generated by Mg-ion-implanted GaN. Jpn. J. Appl. Phys. 58, SCCB10 (2019).

  26. M. Akazawa, R. Kamoshida, S. Murai, T. Narita, M. Omori, J. Suda, and T. Kachi, Effects of dosage increase on electrical properties of metal-oxide-semiconductor diodes with mg-ion-implanted GaN before activation annealing. Phys. Status Solidi B 257, 1900367 (2020).

    Article  CAS  Google Scholar 

  27. M. Akazawa, and R. Kamoshida, Analysis of simultaneous occurrence of shallow surface Fermi level pinning and deep depletion in MOS diode with Mg-ion-implanted GaN before activation annealing. Jpn. J. Appl. Phys. 59, 096502 (2020).

    Article  CAS  Google Scholar 

  28. M. Akazawa, R. Kamoshida, S. Murai, T. Kachi, and A. Uedono, Low-temperature annealing behavior of defects in Mg-ion-implanted GaN studied using MOS diodes and monoenergetic positron beam. Jpn. J. Appl. Phys. 60, 016502 (2021).

    Article  CAS  Google Scholar 

  29. A. Uedono, S. Takashima, M. Edo, K. Ueno, H. Matsuyama, W. Egger, T. Koschine, C. Hugenschmidt, M. Dickmann, K. Kojima, S.F. Chichibu, and S. Ishibashi, Carrier trapping by vacancy-type defects in mg-implanted GaN studied using monoenergetic positron beams. Phys. Status Solidi B 255, 1700521 (2018).

    Article  Google Scholar 

  30. W. Shockley, and W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952).

    Article  CAS  Google Scholar 

  31. P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, K. Tadatomo, and K. Miyake, Analysis of deep levels in n-type GaN by transient capacitance methods. J. Appl. Phys. 76, 304 (1994).

    Article  CAS  Google Scholar 

  32. G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, and M. Heyns, Characteristic trapping lifetime and capacitance-voltage measurements of GaAs metal-oxide-semiconductor structures. Appl. Phys. Lett. 91, 133510 (2007).

    Article  Google Scholar 

  33. F. Schmidt, H. Wenckstern, O. Breitenstein, R. Pickenhain, and M. Grundmann, Low rate deep level transient spectroscopy - a powerful tool for defect characterization in wide bandgap semiconductors. Solid State Electron. 92, 40 (2014).

    Article  CAS  Google Scholar 

  34. J. Pavelka, J. Šikula, M. Tacano, and M. Toita, Activation energy of RTS noise. Radioengineering 20, 194 (2011).

    Google Scholar 

  35. S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, 3rd ed., (Hoboken, NJ: Wiley, 2007).

    Google Scholar 

  36. H. Hasegawa, and H. Ohno, Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces. J. Vac. Sci. Technol. B 4, 1130 (1986).

    Article  CAS  Google Scholar 

  37. H. Hasegawa, and M. Akazawa, Interface models and processing technologies for surface passivation and interface control in III–V semiconductor nanoelectronics. Appl. Surf. Sci 254, 8005 (2008).

    Article  CAS  Google Scholar 

  38. C. Mizue, Y. Hori, M. Miczec, and T. Hashizume, Capacitance–voltage characteristics of Al2O3/AlGaN/GaN structures and state density distribution at Al2O3/AlGaN interface. Jpn. J. Appl. Phys. 50, 021001 (2011).

    Article  Google Scholar 

  39. M. Matys, B. Adamowicz, A. Domanowska, A. Michalewicz, R. Stoklas, M. Akazawa, Z. Yatabe, and T. Hashizume, On the origin of interface states at oxide/III-nitride heterojunction interfaces. J. Appl. Phys. 120, 225305 (2016).

    Article  Google Scholar 

  40. T. Sawada, K. Numata, S. Tohdoh, T. Saitoh, and H. Hasegawa, In-situ characterization of compound semiconductor surfaces by novel photoluminescence surface state spectroscopy. Jpn. J. Appl. Phys. 32, 511 (1993).

    Article  CAS  Google Scholar 

  41. T. Hashizume, and R. Nakasaki, Discrete surface state related to nitrogen vacancy defect on plasma-treated GaN surfaces. Appl. Phys. Lett. 80, 4564 (2002).

    Article  CAS  Google Scholar 

  42. J. L. Lyons, C. G. Van de Walle, Computationally predicted energies and properties of defects in GaN. npj Comput. Mater. 3, 12 (2017).

  43. Z.-Q. Fang, D.C. Look, J. Jasinski, M. Benamara, Z. Liliental-Weber, and R.J. Molnar, Evolution of deep centers in GaN grown by hydride vapor phase epitaxy. Appl. Phys. Lett. 78, 332 (2001).

    Article  CAS  Google Scholar 

  44. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, N.G. Kolin, D.I. Merkurisov, V.M. Boiko, K.D. Shcherbatchev, V.T. Bublik, M.I. Voronova, I.-H. Lee, C.R. Lee, S.J. Pearton, A. Dabirian, and A.V. Osinsky, Fermi level pinning in heavily neutronirradiated GaN. J. Appl. Phys. 100, 093715 (2006).

    Article  Google Scholar 

  45. S. Limpijumnong, C. G. Van de Walle, Diffusivity of native defects in GaN. Phys. Rev. B 69, 035207 (2004).

  46. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, B.L. Choudhary, S. Kumar, S. Kaya, A.E. Kuznetsov, S. Dalela, S.K. Gupta, and P.A. Alvi, Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polym. Compos. 41, 2792 (2020).

    Article  CAS  Google Scholar 

  47. B.L. Choudhary, U. Kumar, S. Kumar, S. Chander, S. Kumar, S. Dalela, S.N. Dolia, and P.A. Alvi, Irreversible magnetic behavior with temperature variation of Ni0.5Co0.5Fe2O4 nanoparticles. J. Magn. Magn. Mater. 507, 166861 (2020).

  48. V. Dhayal, S.Z. Hashmi, U. Kumar, B.L. Choudhary, A.E. Kuznetsov, S. Dalela, S. Kumar, S. Kaya, S.N. Dolia, and P.A. Alvi, Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. J. Mater. Sci. 55, 14829 (2020).

    Article  CAS  Google Scholar 

  49. G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, B.L. Choudhary, S. Kumar, Structural, cation distribution, optical and magnetic properties of quaternary Co0.4+xZn0.6−xFe2O4 (x = 0.0, 0.1 and 0.2) and Li doped quinary Co0.4+xZn0.5−xLi0.1Fe2O4 (x = 0.0, 0.05 and 0.1) nanoferrites. J. Alloys Compd. 828, 154388 (2020).

  50. U. Kumar, S. Upadhyay, P.A. Alvi, Study of reaction mechanism, structural, optical and oxygen vacancy-controlled luminescence properties of Eu-modified Sr2SnO4 Ruddlesden popper oxide. Physica B: Phys. Condens. Matter. 604, 412708 (2021).

  51. B.J. Pong, C.J. Pan, Y.C. Teng, G.C. Chi, W.-H. Li, K.C. Lee, and C.H. Lee, Structural defects and microstrain in GaN induced by Mg ion implantation. J. Appl. Phys. 83, 5992 (1998).

    Article  CAS  Google Scholar 

  52. P. Mendes, K. Lorenz, E. Alves, S. Schwaiger, F. Scholz, and S. Magalhães, Measuring strain caused by ion implantation in GaN. Mater. Sci. Semicond. Process. 98, 95 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. T. Narita of Toyota Central R&D Labs., Inc. for the MOVPE growth of GaN epitaxial layers. This work was supported by MEXT Programs “Research and development of next-generation semiconductor to realize energy-saving society” (Grant Number JPJ005357) and “Creation of innovative core technology for power electronics” (Grant Number JPJ009777).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Akazawa.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akazawa, M., Murai, S. & Kachi, T. Encapsulant-Dependent Effects of Long-Term Low-Temperature Annealing on Interstitial Defects in Mg-Ion-Implanted GaN. J. Electron. Mater. 51, 1731–1739 (2022). https://doi.org/10.1007/s11664-022-09431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09431-y

Keywords

Navigation