Skip to main content
Log in

Liquidus temperature measurements for modeling oxide glass systems relevant to nuclear waste vitrification

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Liquidus temperatures (TL) were measured, and primary phases were determined for 50 (from an initial test matrix of 76) compositions within the Al2O3–B2O3–CaO–Na2O–SiO2 glass-forming system and its constituent ternary subsystems. Strong linear correlations have been found between composition and TL for melts within the same primary phase fields. The TL and primary phase data are being used to develop and refine a modified associate species model (ASM). The impacts of Fe2O3, Li2O, NiO, ZrO2, Cr2O3, ZnO, and MnO additions on the TL of two baseline glass compositions are reported. These data are intended as benchmarks for further expansion of the ASM or other silicate melt solution models of nuclear waste glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Design Construction and Commissioning of the Hanford Tank Waste Treatment and Immobilization Plant. U.S. Department of Energy Contract No. DE-AC27-01RV14136 (2000 as amended).

  2. D.S. Kim and P. Hrma: Models for liquidus temperature of nuclear waste glasses. Ceram. Trans. 45 327 (1994).

    CAS  Google Scholar 

  3. I.G. Choi D.F. Bickford and J.T. Carter: Thermal effects of electrically conductive deposits in a joule-heated melter. Ceram. Trans. 29 645 (1993).

    CAS  Google Scholar 

  4. D.S. Kim and J.D. Vienna: Influence of glass property restrictions on Hanford HLW glass volume. Ceram. Trans. 132 105 (2002).

    CAS  Google Scholar 

  5. P. Hrma J.D. Vienna and M.J. Schweiger: Liquidus temperature limited waste loading maximization for vitrified HLW. Ceram. Trans. 72 449 (1996).

    CAS  Google Scholar 

  6. T.M. Besmann and K.E. Spear: Thermochemical modeling of oxide glasses. J. Am. Ceram. Soc. 85 2887 (2002).

    Article  CAS  Google Scholar 

  7. T.M. Besmann K.E. Spear and J.D. Vienna: Extension of the modified associate species thermochemical model for high-level nuclear waste: Inclusion of chromia in Scientific Basis for Nuclear Waste Management XXVI edited by R.J. Finch and D.B. Bullen (Mater. Res. Soc. Symp. Proc. 757 Warrendale PA 2003) p. 195.

    CAS  Google Scholar 

  8. T.M. Besmann N.S. Kulkarni and K.E. Spear: Thermochemical and phase equilibria property prediction for oxide glass systems based on the modified associate species approach in High Temperature Corrosion and Materials Technology IV edited by E. Opila P. Hou T. Maruyama B. Pieraggi M. McNallan D. Shifler and E. Wuchina. (The Electrochemical Society Pennington NJ 2004) p. 557.

  9. K.E. Spear T.M. Besmann and E.E. Beahm: Thermochemical modeling of glass: Application to high-level nuclear waste glass. MRS Bull. 24(4) 37 (1999).

    Article  CAS  Google Scholar 

  10. J.V. Crum P. Hrma M.J. Schweiger and G.F. Piepel: Liquidus temperature models for high-level waste glasses that precipitate zirconium-containing crystalline phases. Ceram. Trans. 87 271 (1998).

    CAS  Google Scholar 

  11. T. Plaisted P. Hrma J. Vienna and A. Jiricka: Liquidus temperature and primary phase in high-zirconia high-level waste borosilicate glasses in Scientific Basis for Nucelar Waste Management XXIII edited by R.W. Smith and D.W. Shoesmith (Mater. Res. Soc. Symp. Proc. 608 Warrendale PA 2000) p. 709.

    CAS  Google Scholar 

  12. J.D. Vienna P. Hrma J.V. Crum and M. Mika: Liquidus temperature-composition model for multi-component glasses in the Fe Cr Ni and Mn spinel primary phase field. J. Non-Cryst. Solids 292 1 (2001).

    Article  CAS  Google Scholar 

  13. P. Hrma J. Vienna J. Crum and G. Piepel: Liquidus temperature of high-level waste borosilicate glasses with spinel primary phase in Scientific Basis for Nucelar Waste Management XXIII edited by R.W. Smith and D.W. Shoesmith (Mater. Res. Soc. Symp. Proc. 608 Warrendale PA 2000) p. 671.

    CAS  Google Scholar 

  14. M. Mika M.J. Schweiger J.D. Vienna and P. Hrma: Liquidus temperature of spinel precipitating high-level waste glasses in Scientific Basis for Nucelar Waste Management XX edited by W.J. Gray and I.R. Tridy (Mater. Res. Soc. Symp. Proc. 465 Pittsburgh PA 1997) p. 71.

    CAS  Google Scholar 

  15. J.D. Vienna: Nuclear waste glasses in Properties of Glass-Forming Melts edited by L.D. Pye I. Joseph and A. Montenero (CRC Press Boca Raton FL 2005). pp. 391–403.

  16. J.W. Hastie and D.W. Bonnell: A predictive phase-equilibrium model for multicomponent oxide mixtures. 2. Oxides of Na–K–Ca–Mg–Al–Si. High Temp. Sci. 19 275 (1985).

    CAS  Google Scholar 

  17. D.W. Bonnell and J.W. Hastie: A predictive thermodynamic model for complex high-temperature solution phases 11. High Temp. Sci. 26 313 (1989).

    Google Scholar 

  18. B.A. Shakhmatkin N.M. Vedishcheva and A.C. Wright: Can thermodynamics relate the properties of melts and glasses to their structure? J. Non-Cryst. Solids 293 220 (2001).

    Article  Google Scholar 

  19. B.A. Shakhmatkin N.M. Vedishcheva M.M. Shultz and A.C. Wright: The thermodynamic properties of oxide glasses and glass-forming liquids and their chemical-structure. J. Non-Cryst. Solids 177 249 (1994).

    Article  CAS  Google Scholar 

  20. E.F. Osborn and A. Muan: Fig. 501 in Phase Diagrams for Ceramists Vol. 1 edited by E.M. Levin C.R. Robbins and H.F. McMurdie (The American Ceramic Society Columbus OH 1964) p. 181.

  21. G.W. Morey and N.L. Bowen: J. Soc. Glass Technol. 9 p. 232 (1925) reprinted as Fig. 482 in Phase Diagrams for Ceramists Vol. 1 edited by E.M. Levin C.R. Robbins and H.F. McMurdie (The American Ceramic Society Columbus OH 1964) p. 175.

    Google Scholar 

  22. E.F. Osborn and A. Muan: Fig. 630 in Phase Diagrams for Ceramists Vol. 1 edited by E.M. Levin C.R. Robbins and H.F. McMurdie (The American Ceramic Society Columbus OH 1964) p. 219.

  23. ASTM C829-81: Standard practices for measurement of liquidus temperature of glass by the gradient furnace method. (re-approved 1995) in 1999 Annual Book of ASTM Standards, Vol. 15.02 (American Society for Testing and Materials West Conshohocken PA 1999).

    Google Scholar 

  24. R. Backman K.H. Karlsson M. Cable and N.P. Pennington: Model for liquidus temperature of multi-component silicate glasses. Phys. Chem. Glasses 38 103 (1997).

    CAS  Google Scholar 

  25. C. Dreyfus and G. Dreyfus: A machine learning approach to the estimation of the liquidus temperature of glass-forming oxide blends. J. Non-Cryst. Solids 318 63 (2003).

    Article  CAS  Google Scholar 

  26. H. Li B. Jones P. Hrma and J.D. Vienna: Compositional effects on liquidus temperature of Hanford simulated high-level waste glasses precipitating nepheline (NaAlSiO4). Ceram. Trans. 87 279 (1998).

    CAS  Google Scholar 

  27. ASTM E1508-98: Standard guide for quantitative analysis by energy-dispersive spectroscopy in 2003 Annual Book of ASTM Standards Vol. 03.01 (American Society for Testing and Materials West Conshohocken PA 2003).

    Google Scholar 

  28. E.B. Pretorius and A. Muan: Stability of CaNiSi2O6 (“niopside”) and activity-composition relations of CaMgSi2O6 solid solutions at 1350°C. J. Am. Ceram. Soc. 75 1458 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Vienna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanni, J.B., Pressly, E., Crum, J.V. et al. Liquidus temperature measurements for modeling oxide glass systems relevant to nuclear waste vitrification. Journal of Materials Research 20, 3346–3357 (2005). https://doi.org/10.1557/jmr.2005.0424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0424

Navigation