Skip to main content
Log in

Quantitative evaluation of indentation-induced densification in glass

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To estimate the ratio of densification to Vickers indentation volume, three-dimensional images of Vickers indentations on several glasses, including silicate glasses and bulk metallic glass (BMG), were obtained before and after annealing using an atomic force microscope. Large volume recovery of Vickers indentation by annealing was observed for all glasses but BMG. Following previous studies, this recovered volume almost corresponded to the densified volume under a Vickers indenter, and the compositional dependence of densification was discussed. The ratios of densification to the total indentation volume for silica and soda-lime glasses were 92% and 61%, respectively. It was concluded that densification was a general property for silicate glasses and that the ratios of densification to the total indentation volume for all the glasses correlated well with Poisson’s ratios of the glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.W. Peter: Densification and flow phenomena of glass in indentation experiments. J. Non-Cryst. Solids 5, 103 (1970).

    Article  CAS  Google Scholar 

  2. A. Arora, D.B. Marshall and B.R. Lawn: Indentation deformation/fracture of normal and anomalous glasses. J. Non-Cryst. Solids 31, 415 (1979).

    Article  CAS  Google Scholar 

  3. J.T. Hagan: Shear deformation under pyramidal indentations in soda-lime glass. J. Mater. Sci. 15, 1417 (1980).

    Article  CAS  Google Scholar 

  4. S.S. Chiang, D.B. Marshall and A.G. Evans: The response of solids to elastic/plastic indentation I. Stresses and residual stresses. J. Appl. Phys. 53, 298 (1982).

    Article  CAS  Google Scholar 

  5. E.H. Yoffe: Elastic stress fields causes by indenting brittle materials. Philos. Mag. A 46, 617 (1982).

    Article  CAS  Google Scholar 

  6. R.F. Cook and G.M. Pharr: Direct observation of indentation cracking in glass and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).

    Article  CAS  Google Scholar 

  7. F.M. Ernsberger: Role of densification in deformation of glasses under point loading. J. Am. Ceram. Soc. 51, 545 (1968).

    Article  CAS  Google Scholar 

  8. C.R. Kurkjian, G.W. Kammlott and M.M. Chaudhri: Indentation behavior of soda-lime silica glass, fused silica, and single-crystal quartz at liquid-nitrogen temperature. J. Am. Ceram. Soc. 78, 737 (1995).

    Article  CAS  Google Scholar 

  9. W.B. Hillig: Concerning the creation and stability of pyramidal hardness impression on glass, in Proceedings of VIth International Congress on Glass, Washington, July 8–14, 1962 (Am. Ceram. Soc., Westerville, OH, 1963), p. 51.

    Google Scholar 

  10. J.E. Neely and J.D. Mackenzie: Hardness and low-temperature deformation of silica glass. J. Mater. Sci. 3, 603 (1968).

    Article  CAS  Google Scholar 

  11. S. Yoshida, S. Isono, J. Matsuoka and N. Soga: Shrinkage behavior of Knoop indentations in silica and soda-lime-silica glasses. J. Am. Ceram. Soc. 84, 2141 (2001).

    Article  CAS  Google Scholar 

  12. J.D. Mackenzie: High-pressure effects on oxide glass: II. Subsequent heat treatment. J. Am. Ceram. Soc. 46, 470 (1963).

    Article  CAS  Google Scholar 

  13. Y. He, R.B. Schwarz and J.I. Archuleta: Bulk glass formation in the Pd–Ni–P system. Appl. Phys. Lett. 69, 1861 (1996).

    Article  CAS  Google Scholar 

  14. B. Baron, T. Chartier, T. Rouxel, P. Verdier and Y. Laurent: SiC particle reinforced oxynitride glass—Processing and mechanical properties. J. Eur. Ceram. Soc. 17, 773 (1997).

    Article  CAS  Google Scholar 

  15. E.F. Lambson, W.A. Lambson, J.E. Macdonald, M.R.J. Gibbs, G.A. Saunders and D. Turnbull: Elastic behavior and vibrational anharmonicity of a bulk Pd40Ni40P20 metallic glass. Phys. Rev. B 33, 2380 (1986).

    Article  CAS  Google Scholar 

  16. M.G. Walls, M.M. Chaudhri and T.B. Tang: STM profilometry of low-load Vickers indentations in a silicon crystal. J. Phys.: D 25, 500 (1992).

    CAS  Google Scholar 

  17. J. Shen, D.J. Green, R.E. Tressler and D.L. Shelleman: Stress relaxation of a soda lime silicate glass below the glass transition temperature. J. Non-Cryst. Solids 324, 277 (2003).

    Article  CAS  Google Scholar 

  18. G. Hetherington, K.H. Jack and J.C. Kennedy: The viscosity of vitreous silica. Phys. Chem. Glasses 5, 130 (1964).

    CAS  Google Scholar 

  19. A. Agarwal and M. Tomozawa: Surface and bulk structural relaxation kinetics of silica glass. J. Non-Cryst. Solids 209, 264 (1997).

    Article  CAS  Google Scholar 

  20. S.A. Brawer and W.B. White: Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates. J. Chem. Phys. 63, 2421 (1975).

    Article  CAS  Google Scholar 

  21. N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno and T. Fukunaga: High pressure densification of lithium silicate glasses. J. Non-Cryst. Solids 274, 244 (2000).

    Article  CAS  Google Scholar 

  22. K. Kase and D.J. Rowcliffe: Nanoindentation method foe measuring residual stress in brittle materials. J. Am. Ceram. Soc. 86, 811 (2003).

    Article  Google Scholar 

  23. K. Kase, M. Tehler and B. Bergman: Contact residual stress relaxation in soda-lime glass Part 1. Measurement using nanoindentation. J. Euro. Ceram. Soc. (in press).

  24. L.M. Wang, W.H. Wang, R.J. Wang, Z.J. Zhan, D.Y. Dai, L.L. Sun and W.K. Wang: Ultrasonic investigation of Pd39Ni10Cu30P21 bulk metallic glass upon crystallization. Appl. Phys. Lett. 77, 1147 (2000).

    Article  CAS  Google Scholar 

  25. L.M. Wang, Z.J. Zhan, J. Liu, L.L. Sun, G. Li and W.K. Wang: Compression behavior of Pd39Ni10Cu30P21 bulk metallic glass up to 23.5 GPa. J. Phys.: Condens. Matter 13, 5743 (2001).

    CAS  Google Scholar 

  26. K. Suzuki, Y. Benino, T. Fujiwara and T. Komatsu: Densification energy during nanoindentation of silica glass. J. Am. Ceram. Soc. 85, 3102 (2002).

    Article  CAS  Google Scholar 

  27. P.W. Bridgman and I. Simon: Effects of very high pressures on glass. J. Appl. Phys. 24, 405 (1953).

    Article  CAS  Google Scholar 

  28. J.D. Mackenzie: High-pressure effects on oxide glasses: I. Densification in rigid state. J. Am. Ceram. Soc. 46, 461 (1963).

    Article  CAS  Google Scholar 

  29. H.M. Cohen and R. Roy: Effects of ultrahigh pressures on glass. J. Am. Ceram. Soc. 44, 523 (1961).

    Article  CAS  Google Scholar 

  30. T. Rouxel, J.C. Sanglebœuf, C. Moysan and B. Truffin: Indentation topometry in glasses by atomic force microscopy. J. Non-Cryst. Solids 344, 26 (2004).

    Article  CAS  Google Scholar 

  31. S. Yoshida, J.C. Sanglebœuf, and T. Rouxel (unpublished data).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, S., Sangleboeuf, JC. & Rouxel, T. Quantitative evaluation of indentation-induced densification in glass. Journal of Materials Research 20, 3404–3412 (2005). https://doi.org/10.1557/jmr.2005.0418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0418

Navigation