Skip to main content
Log in

Resistivity–temperature behavior of dilute Cu(Ir) and Cu(W) alloy films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The resistivities of as-deposited Cu(4.2Ir), Cu(2.0W), and Cu(2.2W) films are 32.2, 25.4, and 28.0 μΩcm, respectively. These resistivities are significantly higher thanthat for pure Cu films. After annealing the Cu(4.2Ir) film at constant heating rate to 800 °C and the two Cu(W) films to 950 °C, the resistivities reduce to 28.4, 4.3, and 5.2 μΩcm, respectively. The smaller reduction in resistivity for Cu(4.2Ir) compared with that for Cu(W) is partly a consequence of solute redissolution following precipitation. The variation of resistivity with temperature for the films and the Cu-rich end of the binary phase diagrams are used to categorize the decomposition behavior of the Cu(Ir) and Cu(W). These categories were defined by K. Barmak et al., J. Appl. Phys. 87, 2204 (2000). W is placed in category III along with V, Nb, Ta, Cr, Mo, Re, Ru, Os, B, and C. Ir most suitably belongs to Category II together with Fe and Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Barmak, G.A. Lucadamo, C. Cabral Jr., C. Lavoie and J.M.E. Harper: Dissociation of dilute immiscible copper alloy thin films. J. Appl. Phys. 87, 2204 (2000).

    Article  CAS  Google Scholar 

  2. J.M.E. Harper, J. Gupta, D.A. Smith, J.W. Chang, K.L. Holloway, C. Cabral Jr., D.P. Tracy and D.B. Knorr: Crystallographic texture change during abnormal grain growth in Cu–Co thin films. Appl. Phys. Lett. 65, 177 (1994).

    Article  CAS  Google Scholar 

  3. S.L. Zhang, J.M.E. Harper, C. Cabral Jr., and F.M. d’Heurle: In situ resistivity study of copper-cobalt films: precipitation, dissolution and phase transformation. Thin Solid Films 401, 298 (2001).

    Article  CAS  Google Scholar 

  4. S.L. Zhang, J.M.E. Harper and F.M. d’Heurle: High conductivity copper-boron alloys obtained by low temperature annealing. J. Electron. Mater. 30, L1 (2001).

    Article  CAS  Google Scholar 

  5. K. Barmak, A. Gungor, C. Cabral Jr., and J.M.E. Harper: Annealing behavior of Cu and dilute Cu-alloy thin films: Precipitation, grain growth and resistivity. J. Appl. Phys. 94, 1605 (2003).

    Article  CAS  Google Scholar 

  6. Binary Alloy Phase Diagrams, edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, (ASM International, Metals Park, OH, 1990).

  7. K. Barmak, A. Gungor, A.D. Rollett, C. Cabral Jr., and J.M.E. Harper: Texture of Cu and dilute binary Cu-alloy films: Impact of annealing and solute content. Mater. Sci. Semicond. Proc. 6, 175 (2003).

    Article  CAS  Google Scholar 

  8. A. Gungor, K. Barmak, A.D. Rollett, C. Cabral Jr., and J.M.E. Harper: Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Ir) and Cu(W) alloy thin films. J. Vac. Sci. Technol. B 20, 2314 (2002).

    Article  CAS  Google Scholar 

  9. A. Gungor: Cu and Cu-alloy thin films: Evolution of resistivity and microstructure. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA (2002).

    Google Scholar 

  10. H.E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706(1957).

    Article  CAS  Google Scholar 

  11. D.B. Butrymowicz, J.R. Manning and M.E. Read: International Copper Research Association Monograph V. The Metallurgy of Copper. Diffusion Rate Data and Mass Transport Phenomena for Copper Systems (National Bureau of Standards, Washington, DC, 1977).

    Google Scholar 

  12. D.B. Butrymowicz, J.R. Manning and M.E. Read: International Copper Research Association Monograph VIII. The Metallurgy of Copper. Diffusion Rate Data and Mass Transport Phenomena for Copper Systems (National Bureau of Standards, Washington, DC, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Barmak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barmak, K., Cabral, C., Kellock, A.J. et al. Resistivity–temperature behavior of dilute Cu(Ir) and Cu(W) alloy films. Journal of Materials Research 20, 3391–3396 (2005). https://doi.org/10.1557/jmr.2005.0416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0416

Navigation