Skip to main content
Log in

Preparation and characterization of CuN-based ternary alloy films using Cr or Zr for stabilizing N

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The surface hardening of Cu is an effective way to keep good electrical conductivity and increase chemical inertness. Here, Cr and Zr are introduced into Cu films to stabilize N and increase the film hardness. CuN-based alloy films are prepared on single-crystal Si(100) substrates using magnetron sputtering. Cu(Cr, N) films are mainly composed of Cu and Cr2N nanocrystals while Cu and Zr2N nanocrystals compose Cu(Zr, N) films. The thermal stability of the ternary films comes from the strong interaction between Cr (or Zr) and N which is contributing to the generation of stable nitrides. In terms of resistivity and hardness, the Cu(Cr, N) and Cu(Zr, N) films prepared at the N2/Ar ratio of 1/10 show preferable properties. Especially, the Cu86.1Zr6.1N7.8 film exhibits the highest hardness (∼4.7 GPa) and lowest resistivity (63.6 µΩ·cm). The chemical inertness of Cu film can also be improved by adding Cr–N and Zr–N. These ternary films are expected to apply for Cu surface nitrogenization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. C.L. Huang, C.H. Lai, P.H. Tsai, H.A. Huang, J.C. Lin, and C. Lee: Growth, thermal stability and Cu diffusivity of reactively sputtered NbN thin films as diffusion barriers between Cu and Si. ECS J. Solid State Sci. 2, N152 (2013).

    Article  CAS  Google Scholar 

  2. A. Gupta, H. Wang, A. Kvit, G. Duscher, and J. Narayan: Effect of microstructure on diffusion of copper in TiN films. J. Appl. Phys. 93, 5210 (2003).

    Article  CAS  Google Scholar 

  3. B. Yao, Z. Han, Y.S. Li, N.R. Tao, and K. Lu: Dry sliding tribological properties of nanostructured copper subjected to dynamic plastic deformation. Wear 271, 1609 (2011).

    Article  CAS  Google Scholar 

  4. J.B. Zhou, T. Gustafsson, and E. Garfunkel: The structure and thermal behavior of Cu on ultrathin films of SiO2 on Si(111). Surf. Sci. 372, 21 (1997).

    Article  CAS  Google Scholar 

  5. J.P. Chu, C.H. Lin, and V.S. John: Cu films containing insoluble Ru and RuNx on barrierless Si for excellent property improvements. Appl. Phys. Lett. 91, 132109 (2007).

    Article  Google Scholar 

  6. X.N. Li, L.J. Liu, X.Y. Zhang, J.P. Chu, Q. Wang, and C. Dong: Barrierless Cu–Ni–Mo interconnect films with high thermal stability against silicide formation. J. Electron. Mater. 41, 3447 (2012).

    Article  CAS  Google Scholar 

  7. I.S. Batra, G.K. Dey, U.D. Kulkarni, and S. Banerjee: Microstructure and properties of a Cu–Cr–Zr alloy. J. Nucl. Mater. 299, 91 (2001).

    Article  CAS  Google Scholar 

  8. D. Wang, N. Nakamine, and Y. Hayashi: Properties of various sputter-deposited Cu–N thin films. J. Vac. Sci. Technol., A 16, 2084 (1998).

    Article  CAS  Google Scholar 

  9. Z.Q. Liu, W.J. Wang, T.M. Wang, S. Chao, and S.K. Zheng: Thermal stability of copper nitride films prepared by rf magnetron sputtering. Thin Solid Films 325, 55 (1998).

    Article  CAS  Google Scholar 

  10. T. Maruyama and T. Morishita: Copper nitride and tin nitride thin films for write-once optical recording media. Appl. Phys. Lett. 69, 890 (1996).

    Article  CAS  Google Scholar 

  11. L. Maya: Copper nitride thin films prepared by dc sputtering. Mat. Res. Soc. Symp. Proc. 282, 203 (1993).

    Article  CAS  Google Scholar 

  12. T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, and Y. Nakayama: Thermal decomposition of copper nitride thin films and dots formation by electron beam writing. Appl. Surf. Sci. 169, 358 (2001).

    Article  Google Scholar 

  13. X. Li, W. Sun, H. Yan, K. Liu, X. Wang, and N. Luo: Preparation of nano-Al2O3 dispersion strengthened coating on copper surface. Rare Metal Mat. Eng. 41, 32 (2012).

    Article  Google Scholar 

  14. A.L. Cabrera, J.F. Kirner, and J.N. Armor: Oxidation protection for a variety of transition metals and copper via surface silicides formed with silane containing atmospheres. J. Mater. Res. 6, 71 (1991).

    Article  CAS  Google Scholar 

  15. A. Takeuchi and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).

    Article  CAS  Google Scholar 

  16. D.G. Sangiovanni, B. Alling, P. Steneteg, L. Hultman, and I.A. Abrikosov: Nitrogen vacancy, self-interstitial diffusion, and Frenkel-pair formation/dissociation in B1 TiN studied by ab initio and classical molecular dynamics with optimized potentials. Phys. Rev. B 91, 054301 (2015).

    Article  Google Scholar 

  17. M. Mühlbacher, A.S. Bochkarev, F. Mendez-Martin, B. Sartory, L. Chitu, M.N. Popov, P. Puschnig, J. Spitaler, H. Ding, N. Schalk, J. Lu, L. Hultman, and C. Mitterer: Cu diffusion in single-crystal and polycrystalline TiN barrier layers: A high-resolution experimental study supported by first-principles calculations. J. Appl. Phys. 118, 085307 (2015).

    Article  Google Scholar 

  18. N. Laegreid and G.K. Wehner: Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 eV. J. Appl. Phys. 32, 365 (1961).

    Article  CAS  Google Scholar 

  19. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben: Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer, Boca Raton, FL, 1992); pp. 77, 87, 109.

    Google Scholar 

  20. A. Conde, A.B. Cristóbal, G. Fuentes, T. Tate, and J. de Damborenea: Surface analysis of electrochemically stripped CrN coatings. Surf. Coat. Technol. 201, 3588 (2006).

    Article  CAS  Google Scholar 

  21. Q. Kong, L. Ji, H. Li, X. Liu, and Y. Wang: Composition, microstructure, and properties of CrNx films deposited using medium frequency magnetron sputtering. Appl. Surf. Sci. 257, 2269 (2011).

    Article  CAS  Google Scholar 

  22. A. Rizzo, M.A. Signore, L. Mirenghi, and D. Dimaio: Deposition and properties of ZrNx films produced by radio frequency reactive magnetron sputtering. Thin Solid Films 515, 1486 (2006).

    Article  CAS  Google Scholar 

  23. O. Lavigne, C. Alemany-Dumont, B. Normand, S. Berthon-Fabry, and R. Metkemeijeret: Thin chromium nitride PVD coatings on stainless steel for conductive component as bipolar plates of PEM fuel cells: Ex-situ and in-situ performances evaluation. Int. J. Hydrogen Energy 37, 10789 (2012).

    Article  CAS  Google Scholar 

  24. G. Cui, M. Lane, K. Vijayamohanan, and G. Ramanath: Interfacial adhesion of Cu to self-Assembled monolayers on SiO2. Mater. Res. Soc. Symp. Proc. 695, 329 (2002).

    CAS  Google Scholar 

  25. Y. Cheng and Y.F. Zheng: A study of ZrN/Zr coatings deposited on NiTi alloy by PIIID technique. IEEE Trans. Plasma Sci. 34, 1105 (2006).

    Article  CAS  Google Scholar 

  26. D. Roman, J. Bernardi, C.L.G. de Amorim, F.S. de Souza, A. Spinelli, C. Giacomelli, C.A. Figueroa, I.J.R. Baumvol, and R.L.O. Basso: Effect of deposition temperature on microstructure and corrosion resistance of ZrN thin films deposited by DC reactive magnetron sputtering. Mater. Chem. Phys. 130, 147 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported by the National Natural Science Foundation of China (Grant No. 51271045) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaona Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Li, X., Liu, Y. et al. Preparation and characterization of CuN-based ternary alloy films using Cr or Zr for stabilizing N. Journal of Materials Research 32, 1333–1342 (2017). https://doi.org/10.1557/jmr.2017.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.62

Navigation