Skip to main content
Log in

Spectroellipsometric characterization of Au-Y2O3–stabilized ZrO2 nanocomposite films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocomposite thin films consisting of Au nanoparticles embedded in yttria-stabilized zirconia (YSZ) were synthesized at room temperature by radio frequency magnetron co-sputtering from YSZ and Au targets and subsequently annealed in an argon atmosphere. Au microstructure and particle size were characterized as a function of annealing temperature from 600 to 1000 °C by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Rutherford backscattering spectroscopy. Spectroscopic ellipsometry was also used to determine the optical constants of the resulting films. In particular, the refractive index of the nanocomposites was found to undergo an anomalous dispersion in the spectral region where the extinction coefficient achieves its maximum. Additionally, the incorporation of Au in the YSZ matrix was found to increase the refractive index in comparison to that of YSZ. At annealing temperatures higher than 800 °C, a good agreement was found between experimental findings and theoretical models using bulk dielectric functions for Au, as modified to account for a reduced mean free path for scattering than that for free electrons. However, for annealing temperatures below 800 °C, an additional offset was required for the optical constants of Au to obtain good agreement between theory and experiment. This behavior was attributed to a relatively high atomic Au concentration in the YSZ matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanahashi Y. Manabe T. Tohda S. Sasaki and A. Nakamura: Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J. Appl. Phys. 79 1244 (1996).

    Article  CAS  Google Scholar 

  2. H.B. Liao R.F. Xiao and G.K.L. Wong: Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency. Appl. Phys. B. Lasers Opt. 65 673 (1997).

    Article  CAS  Google Scholar 

  3. H. Liao R.F. Xiao H. Wong K.S. Wong and G.K.L. Wong: Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale. Appl. Phys. Lett. 72 1717 (1998).

    Article  Google Scholar 

  4. A.D. MacFarland and Van R.P. Duyne: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3 1057 (2003).

    Article  Google Scholar 

  5. M. Ando T. Kobayashi S. Iijima and M. Haruta: Optical CO sensitivity of Au–CuO composite film by use of the plasmon absorption change. Sens. Actuators B 96 589 (2003).

    Article  CAS  Google Scholar 

  6. U. Kreibig and M. Vollmer: Optical Properties of Metal Clusters; Springer: New York 1995; p. 23.

    Book  Google Scholar 

  7. T. Girardeau S. Camelio D. Babonneau J. Toudert and A. Barranco: Correlations between the microstructure of Ag-Si3 N4 multilayers and their optical properties. Thin Solid Films 455 313 (2004).

    Article  Google Scholar 

  8. P. Zhou H. You J. Jia J. Li T. Han S. Wang R. Zhang Y. Zheng and L. Chen: Concentration and size dependence of optical properties of Ag:Bi2O3 composite films by using the co-sputtering method. Thin Solid Films 455 605 (2004).

    Article  Google Scholar 

  9. R. Roy S. Mandal D. Bhattacharyya and A.K. Pal: An ellipsometric investigation of Ag/SiO2 nanocomposite thin films. Eur. Phys. J. B 34 25 (2003).

    Article  CAS  Google Scholar 

  10. J.C.G. de San R. Serna J. Gonzalo C.N. Alfonso D.E. Hole and A. Naudon: Refractive index of Ag nanocrystals composite films in the neighborhood of the surface plasmon resonance. J. App. Phys. 91 1536 (2002).

    Article  Google Scholar 

  11. S. Cho H. Lim K.S. Lee T.S. Lee B. Sheong W.M. Kim and S. Lee: Spectro-ellipsometric studies of Au/SiO2 nanocomposite films. Thin Solid Films 475 133 (2005).

    Article  CAS  Google Scholar 

  12. G. Sirinakis R. Siddique C. Monokroussos M.A. Carpenter and A.E. Kaloyeros: Microstructure and optical properties of Y2O3-stabilized ZrO2-Au nanocomposite films. J. Mater. Res. 20 2516 (2005).

    Article  CAS  Google Scholar 

  13. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction 3rd ed. (Prentice-Hall Upper Saddle River NJ 2001).

    Google Scholar 

  14. A.R.L. Thermo: A Lorentzian peak is more appropriate than a Gaussian profile when the broadening of the XRD peak is due to nanograins instead of stress or strain. (private communication).

  15. J.C. Garnett Maxwell: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A203 385 (1904).

    Google Scholar 

  16. P.e.r. Boher: SOPRA WinElli version 4.07 (1994).

    Google Scholar 

  17. H. Hövel S. Fritz A. Hilger U. Kreibig and M. Vollmer: Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phys. Rev. B 48 18178 (1993).

    Article  Google Scholar 

  18. N.W. Ashcroft and N.D. Mermin: Solid State Physics (Saunders College Publishing Philadelphia PA 1976).

    Google Scholar 

  19. B.N.J. Persson: Polarizability of small spherical metal particles: Influence of the matrix environment. Surf. Sci. 281 153 (1993).

    Article  CAS  Google Scholar 

  20. De G. Marchi G. Mattei P. Mazzoldi C. Sada and A. Miotello: Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere. J. Appl. Phys. 92 4249 (2002).

    Article  Google Scholar 

  21. C.F. Bohren and D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley New York 1983).

    Google Scholar 

  22. P.B. Johnson and R.W. Christy: Optical constants of the noble metals. Phys. Rev. B 6 4370 (1972).

    Article  CAS  Google Scholar 

  23. M. Quinten: Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV. Z. Phys. B 100 211 (1996).

    Article  Google Scholar 

  24. U. Kriebig: In Growth and Properties of Metal Clusters edited by J. Bourdon (Elsevier Scientific Amsterdam The Netherlands 1980) p. 371.

    Book  Google Scholar 

  25. D. Dalacu and L. Martinu: Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films. J. Appl. Phys. 87 228 (2000).

    Article  CAS  Google Scholar 

  26. M.M. Alvarez J.T. Khoury T.G. Schaaff M.N. Shafigullin I. Vezmar and R.L. Whetten: Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 101 3706 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Carpenter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirinakis, G., Siddique, R., Dunn, K.A. et al. Spectroellipsometric characterization of Au-Y2O3–stabilized ZrO2 nanocomposite films. Journal of Materials Research 20, 3320–3328 (2005). https://doi.org/10.1557/jmr.2005.0411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0411

Navigation