Skip to main content

Advertisement

Log in

In vitro mineralization on chitosan using solutions with excess of calcium and phosphate ions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pseudo-simulated body fluids (SBFs) were used in in vitro experiments to promote chitosan porous membrane calcification. Common SBFs, which had concentrations of phosphate or calcium ions doubled, were so named because they do not replicate, by rigor, a genuine body fluid ion concentration. The objective of using such calcification fluids was to study the influence of phosphate and calcium excess in solution on mineralization deposit characteristics. SEM-EDS analyses showed that morphology and composition of deposits varies depending on which ion (phosphate or calcium) is in excess; x-ray diffractograms show that deposits are poorly crystalline (like biological apatites) but still show better crystallinity in deposits generated from P-rich SBF. This result, added to previous ones [such as those reported by Beppu and Santana Mater. Res. 5, 47 (2002)] where a difference in the interconnectivity of the inorganic and organic (matrix) phases was stressed, suggests different deposition processes for each situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. Beppu and C.C. Santana: Influence of calcification solution on in vitro chitosan mineralization. Mater. Res. 5 47 (2002).

    Article  CAS  Google Scholar 

  2. Y. Pathak F.J. Shoen and R.J. Levy: Pathologic calcification of biomaterials in Biomaterials Science: An Introduction to Materials in Medicine edited by B.D. Ratner A.S. Hoffman and F.J. Schoen (Academic Press San Diego CA 1996) p. 272.

    Google Scholar 

  3. P.A. Sandford: Chitosan: commercial uses and potential applications in Chitin and Chitosan edited by G. Skjaek-Braek. (Elsevier Applied Science New York 1989) p. 51.

  4. M.M. Beppu and C.C. Santana: Influence of acetylation on in vitro chitosan membrane biomineralization. Key Eng. Mater. 31 192 (2001).

    Google Scholar 

  5. T. Kokubo S. Ito Z.T. Huang T. Hayashi S. Sakka T. Kitsugi and T. Yamamuro: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 24 331 (1990).

    Article  CAS  Google Scholar 

  6. J.E. Davies: Mechanisms of endosseous integration. 1st COLAOB Conference Belo Horizonte Brazil 1998.

    Google Scholar 

  7. M.R. Mucalo M. Toriyama Y. Y Yokogawa T. Suzuki Y. Kawamoto F. Nagata and K. Nishizawa: Growth of calcium-phosphate on ion-exchange resins pre-saturated with calcium or hydrogenophosphate ions—an SEM/EDX and XPS study. J. Mater. Sci.-Mater. Med. 6 409 (1995).

    Article  CAS  Google Scholar 

  8. J. Ren and C. Jiang: Transport phenomena of chitosan membrane in pervaporation of water–ethanol mixture. Sep. Sci. Technol. 33 517 (1998).

    Article  CAS  Google Scholar 

  9. G. Golomb and D. Wagner: Development of a new in vitro model for studying implantable polyurethane calcification. Biomaterials 12 397 (1991).

    Article  CAS  Google Scholar 

  10. H. Saito R. Tabeta and K. Ogawa: High-resolution solid-state 13C NMR study of chitosan and its salts with acids: conformational characterization of polymorphs conformational-dependent 13C chemical shifts. Macromolecules 20 2424 (1987).

    Article  CAS  Google Scholar 

  11. K. Ogawa S. Hirano T. Miyanishi T. Yui and T. Watanabe: A new polymorph of chitosan. Macromolecules 17 973 (1984).

    Article  CAS  Google Scholar 

  12. H.M. Kim K. Kishimoto F. Miyaji T. Kokubo T. Yao Y. Suetsugu J. Tanaka and T. Nakamura: Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products. J. Biomed. Mater. Res. 46 228 (1999).

    Article  CAS  Google Scholar 

  13. H.M. Kim K. Kishimoto F. Miyaji T. Kokubo T. Yao Y. Suetsugu J. Tanaka and T. Nakamura: Composition and structure of apatite formed on organic polymer in simulated body with a high content of carbonate ion. J. Mater. Sci.-Mater. Med. 11 421 (2000).

    Article  CAS  Google Scholar 

  14. A. Oyane K. Onuma A. Ito H.M. Kim T. Kokubo and T. Nakamura: Formation and growth of clusters in conventional and new kinds of simulated body fluids. J. Biomed. Mater. Res. 64A 339 (2003).

    Article  CAS  Google Scholar 

  15. D. Bayraktar and A.C. Tas: Chemical preparation of carbonated calcium hydroxyapatite powders at 37 °C in urea-containing synthetic body fluids. J. Eur. Ceram. Soc. 19 2573 (1999).

    Article  CAS  Google Scholar 

  16. P. Calvert and P. Rieke: Biomimetic mineralization in and on polymers. Chem. Mater. 8 1715 (1996).

    Article  CAS  Google Scholar 

  17. A. Keller M. Hikosaka S. Rastogi A. Toda P.J. Barham and Goldbeck-G. Wood: An approach to the formation and growth for new phases with application to polymer crystallization: Effect of finite size metastability and Ostwald’s rule of stages. J. Mater. Sci. 29 2579 (1994).

    Article  CAS  Google Scholar 

  18. X. Liu and C. Ding: Morphology of apatite formed on surface of wollastonite coating soaked in simulate body fluid. Mater. Lett. 57 652 (2002).

    Article  CAS  Google Scholar 

  19. E. Landi A. Tampieri G. Celotti R. Langenati M. Sandri and S. Sprio: Nucleation of biomimetic apatite in synthetic body fluids: Dense and porous scaffold development. Biomaterials 26 2835 (2005).

    Article  CAS  Google Scholar 

  20. Hö Willand V. Rheinberger and M. Frank: Mechanisms of nucleation and controlled crystallization of needle-like apatite in glass-ceramics of the SiO2–Al2O3–K2O–CaO–P2O5 system. J. Non-Cryst. Solids 253 170 (1999).

    Article  Google Scholar 

  21. P.W. Brown: Phase relationships in the ternary system CaO–P2O5–H2O at 25 °C. J. Am. Ceram. Soc. 75 17 (1992).

    Article  CAS  Google Scholar 

  22. T. Aoba: Solubility properties for human tooth mineral and pathogenesis of dental caries. Oral Dis. 10 249 (2004).

    Article  CAS  Google Scholar 

  23. J. Christoffersen J. Dohrup and M. Christoffersen: Kinetics of growth and dissolution of calcium hydroxyapatite in suspension with variable calcium to phosphate ratio. J. Cryst. Growth 186 275 (1998).

    Article  CAS  Google Scholar 

  24. M.S. Tung: Calcium Phosphate in Biological and Industrial System (Kluwer Academic Publishers Hingham U.K. 1998) p. 1.

    Book  Google Scholar 

  25. Handbook of Chemistry and Physics 2003 edited by D.v.d.R. Lide (CRC Press Boca Raton FL) p. 4.

  26. S. Weiner and W. Traub: Bone structure: from angstroms to microns. FASEB J. 6 879 (1992).

    Article  CAS  Google Scholar 

  27. K.H. Karlsson: Bone implants—a challenge to materials science. Ann. Chir. Gynaecol. 88 226 (1999).

    CAS  Google Scholar 

  28. H. Takadama H.M. Kim T. Kokubo and T. Nakamura: Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDEX study in vitro. Chem. Mater. 13 1108 (2001).

    Article  CAS  Google Scholar 

  29. M. Rahzi DesbrièJ. res A. Tolaimate M. Rinaudo P. Vottero A. Alagui and M. Meray El: Influence of the nature of the metal ions on the complexation with chitosan. Application to the treatment of liquid waste. Eur. Polym. J. 38 1523 (2002).

    Article  Google Scholar 

  30. T. Tianwei H. Xiaojing and D. Weixia: Adsorption behaviour of metal ions imprinted chitosan resin. J. Chem. Technol. Biotechnol. 76 191 (2001).

    Article  Google Scholar 

  31. S. Mann: Biomineralization and biomimetic materials chemistry. J. Mater. Chem. 5 935 (1995).

    Article  CAS  Google Scholar 

  32. A.E. Nielsen: Electrolyte crystal growth mechanisms. J. Cryst. Growth 67 289 (1984).

    Article  CAS  Google Scholar 

  33. A.E. Nielsen and J.M.J. Toft: Electrolyte crystal growth kinetics. J. Cryst. Growth 67 278 (1984).

    Article  CAS  Google Scholar 

  34. P. Li K. Nakanishi T. Kokubo and K. de Groot: Introduction and morphology of hydroxyapatite precipitated from metastable simulated body fluids on sol-gel prepared silica. Biomaterials 14 963 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Masumi Beppu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beppu, M.M., Torres, M.A. & Aimoli, C.G. In vitro mineralization on chitosan using solutions with excess of calcium and phosphate ions. Journal of Materials Research 20, 3303–3304 (2005). https://doi.org/10.1557/jmr.2005.0410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0410

Navigation