Skip to main content
Log in

Nanoporous zero-valent iron

  • Articles—Energy and The Environment Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hollow and nanoporous particles of zero-valent iron (ZVI) were prepared with template-directed synthesis. Polymer resin beads (0.4 mm diameter) were coated with nanoscale iron particles by reductive precipitation of ferrous iron [Fe(II)] with sodium borohydride. The resin was calcinated at 400 °C to produce hollow and nanoporous iron spheres. The nanoporous iron oxides were then reduced to metallic iron by hydrogen at 500 °C. Scanning electron microscope images of the reduced iron spheres showed that the particles were hollow. The shell thickness was approximately 5 μm and highly porous. Brunauer–Emmett–Teller specific surface area was 2100 m2/kg. In comparison, the theoretical specific surface area of solid iron particles of the same size is just 1.9 m2/kg. Batch tests showed that the surface area normalized reactivity of the porous particles were 14–31% higher than microscale iron particles with similar surface areas for the transformation of hexavalent chromium [Cr(VI)], azo dye Orange II (4-[(2-hydroxyl-1-naphthalenyl)azo]-benzenesulfonic acid monosodium, and trichloroethene. The combined performance enhancement (larger surface area and higher surface activity) is significant (>1200 times).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Gillham and S.F. O’Hannesin: Enhanced degradation of halogenated alipahtics by zero-valent iron. Ground Water 32 958 (1994).

    Article  CAS  Google Scholar 

  2. R.C. Starr and J.A. Cherry: In-situ remediation of contaminated ground-water: The funnel and gate system. Ground Water 32 465 (1994).

    Article  CAS  Google Scholar 

  3. M.D. LaGrega P. Buckingham and J.C. Evans: Hazardous Waste Management 2nd ed. (McGraw-Hill New York 2001).

    Google Scholar 

  4. O. Gilbert J. de Pablo J.L. Cortina and C. Ayora: Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment. J. Chem. Technol. Biot. 78 489 (2003).

    Article  CAS  Google Scholar 

  5. E.L. Appleton: A nickel-iron wall against contaminated groundwater. Environ. Sci. Technol. 30 536A (1996).

    Article  CAS  Google Scholar 

  6. M.J. Barcelona and G. Xie: In situ lifetimes and kinetics of a reductive whey barrier and an oxidative ORC barrier in the subsurface. Environ. Sci. Technol. 35 3378 (2001).

    Article  CAS  Google Scholar 

  7. M.M. Scherer S. Richter R.L. Valentine and P.J. Alvarez: Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Environ. Sci. Technol. 30 363 (2000).

    Article  CAS  Google Scholar 

  8. R.W. Puls D.W. Blowes and R.W. Gillham: Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center Elizabeth City North Carolina. J. Hazard. Mater. 68 109 (1999).

    Article  CAS  Google Scholar 

  9. C. Wang and W.X. Zhang: Nanoscale iron particles for reductive dechlorination of PCE and PCBs. Environ. Sci. Technol. 31 2154 (1997).

    Article  CAS  Google Scholar 

  10. H. Lien and W.X. Zhang: Complete dechlorination of chlorinated ethenes with nanoparticles. Colloids Surf. A 191 97 (2001).

    Article  CAS  Google Scholar 

  11. W.A. Arnold and A.L. Roberts: Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 34 1794 (2000).

    Article  CAS  Google Scholar 

  12. D.P. Siantar C.G. Schreier C.S. Chou and M. Reinhard: Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res. 30 2315 (1996).

    Article  CAS  Google Scholar 

  13. Y. Xu and W.X. Zhang: Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind. Eng. Chem. Res. 39 2238 (2000).

    Article  CAS  Google Scholar 

  14. Y. Furukawa J.W. Kim J. Watkins and R.T. Wilkin: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ. Sci. Technol. 36 5469 (2002).

    Article  CAS  Google Scholar 

  15. D.W. Elliott and W.X. Zhang: Field assessment of nanoparticles for groundwater treatment. Environ. Sci. Technol. 35 4922 (2001).

    Article  CAS  Google Scholar 

  16. S.J. Morrison D.R. Metzler and C.E. Carpenter: Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zerovalent iron. Environ. Sci. Technol. 35 385 (2001).

    Article  CAS  Google Scholar 

  17. I.F. Cheng R. Muftikian Q. Fernando and N. Korte: Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35 2689 (1997).

    Article  CAS  Google Scholar 

  18. E.J. Weber: Iron-mediated reductive transformations: Investigation of reaction mechanism. Environ. Sci. Technol. 30 716 (1996).

    Article  CAS  Google Scholar 

  19. B.L. Deng T.J. Campbell and D.R. Burris: Hydrocarbon formation in metallic iron/water systems. Environ. Sci. Technol. 31 1185 (1997).

    Article  CAS  Google Scholar 

  20. L.J. Matheson and P.G. Tratnyek: Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28 2045 (1994).

    Article  CAS  Google Scholar 

  21. A.E. Gash T.M. Tillotson J.H. Satcher J.F. Poco L.W. Hrubesh and R.L. Simpson: Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem. Mater. 13 999 (2001).

    Article  CAS  Google Scholar 

  22. D.G. Shchukin J.H. Schattka M. Antonietti and R.A. Caruso: Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template. J. Phys. Chem. B 107 952 (2003).

    Article  CAS  Google Scholar 

  23. R.A. Caruso and J.H. Schattka: Cellulose acetate templates for porous inorganic network fabrication. Adv. Mater. 12 1921 (2000).

    Article  CAS  Google Scholar 

  24. C.T. Kresge M.E. Leonowiez W.J. Roth J.C. Vartuli and J.S. Beck: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359 710 (1992).

    Article  CAS  Google Scholar 

  25. S.A. Johnson P.J. Ollivier and T.E. Mallouk: Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283 963 (1999).

    Article  CAS  Google Scholar 

  26. O.D. Velev T.A. Jede R.F. Lobo and A.M. Lenhoff: Porous silica via colloidal crystallization. Nature 389 447 (1997).

    Article  CAS  Google Scholar 

  27. S.H. Park and H. Xia: Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv. Mater. 10 1045 (1998).

    Article  CAS  Google Scholar 

  28. P. Jiang J. Cizeron J.F. Bertone and V.L. Colvin: Preparation of macroporous metal films from colloidal crystals. J. Am. Chem. Soc. 121 7957 (1999).

    Article  CAS  Google Scholar 

  29. Y. Ding and J. Erlebacher: Nanoporous metals with controlled multimodal pore-size distribution. J. Am. Chem. Soc. 125 7772 (2003).

    Article  CAS  Google Scholar 

  30. K.M. Kulinowski P. Jiang H. Vaswani and V.L. Colvin: Porous metals from colloidal templates. Adv. Mater. 12 833 (2000).

    Article  CAS  Google Scholar 

  31. O.D. Velev P.M. Tessier A.M. Lenhoff and E.W. Kaler: Materials: A class of porous metallic nanostructures. Nature 401 548 (1999).

    Article  CAS  Google Scholar 

  32. H. Yan C.F. Nalnford B.T. Holland M. Parent W.H. Smyrl and A. Stein: A chemical synthesis of periodic macroporous NiO and metallic Ni. Adv. Mater. 11 1003 (1999).

    Article  CAS  Google Scholar 

  33. R.G. Harrison O.D. Fox M.O. Meng N.K. Dalley and L.J. Barbous: Cation control of pore and channel size in cage-based metal-organic porous materials. Inorg. Chem. 41 838 (2002).

    Article  CAS  Google Scholar 

  34. M. Breulmann S.A. Davis S. Mann H. Hentze and M. Antonietti: Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks. Adv. Mater. 12 502 (2000).

    Article  CAS  Google Scholar 

  35. W.X. Zhang C. Wang and H. Lien: Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 40 387 (1998).

    Article  CAS  Google Scholar 

  36. W.X. Zhang: Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5 323 (2003).

    Article  CAS  Google Scholar 

  37. S.M. Ponder J.G. Darab and T.E. Mallouk: Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zero-valent iron. Environ. Sci. Technol. 34 2564 (2000).

    Article  CAS  Google Scholar 

  38. J. Kroschwitz and Howe-M. Grant Encyclopedia of Chemical Technology 4th ed. (Wiley & Sons New York 1993).

    Google Scholar 

  39. U.S. Agency Environmental Protection: Integrated Risk Information System (IRIS) (Environmental Criteria and Assessment Office Cincinnati OH 1992).

    Google Scholar 

  40. W. Stumm and J.J. Morgan: Aquatic Chemistry 3rd ed. (Wiley & Sons New York 1996).

    Google Scholar 

  41. M.J. Alowitz and M.M. Scherer: Kinetics of nitrate nitrite and Cr(VI) reduction by iron metal. Environ. Sci. Technol. 36 299 (2002).

    Article  CAS  Google Scholar 

  42. K. Hunger: Industry Dyes: Chemistry Properties Applications (Wiley-VCH Weinheim Germany 2003).

    Google Scholar 

  43. J. Cao L. Wei Q. Huang L. Wang and S. Han: Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38 565 (1999).

    Article  CAS  Google Scholar 

  44. S. Namand and P.G. Tratnyek: Reduction of azo dyes with zero-valent iron. Water Res. 34 1837 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-xian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Clasen, P. & Zhang, Wx. Nanoporous zero-valent iron. Journal of Materials Research 20, 3238–3243 (2005). https://doi.org/10.1557/jmr.2005.0401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0401

Navigation