Skip to main content
Log in

Analyzing the mechanical behavior of thin films using nanoindentation, cantilever microbeam deflection, and finite element modeling

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A comprehensive study was undertaken to identify the extent to which the mechanical properties of thin metal films on substrates could be determined quantitatively from instrumented sharp indentation. The mechanical behavior of thin Cu films on substrates was investigated using three different methods: nanoindentation, cantilever microbeam deflection, and microtensile testing. Finite element calculations of the nanoindentation and microbeam deflection experiments were conducted to extract yield strength and hardening modulus. Systematic experiments were performed to investigate the consistency of the different experimental techniques. The mechanical behavior of the Cu films was observed to depend on the film thickness. However, the results from finite element modeling of nanoindentation and microbeam deflection are quite different. In both cases, unique solutions for yield strength and hardening modulus were found. This is particularly noteworthy for the nanoindentation experiments; it is argued that the substrate destroys the self-similarity that is present during indentation of bulk material using a Berkovich tip. Microbeam deflection experiments seem to be more sensitive to the elastic–plastic transition, whereas the nanoindentation results describe the mechanical behavior at larger plastic strains. This is corroborated by microtensile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.R. Brotzen, Int. Mater. Rev. 39, 24 (1994).

    Article  CAS  Google Scholar 

  2. O. Kraft and C. Volkert, Adv. Eng. Mater. 3, 99 (2001).

    Article  CAS  Google Scholar 

  3. W.D. Nix, Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  4. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  5. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  6. A.E. Giannakopoulos and S. Suresh, Scr. Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  7. A.K. Bhattacharya and W.D. Nix, Int. J. Solids Struct. 24, 881 (1988).

    Article  Google Scholar 

  8. T.A. Laursen and J.C. Simo, J. Mater. Res. 7, 618 (1992).

    Article  CAS  Google Scholar 

  9. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh, Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  10. Y-T. Cheng and C-M. Cheng, Philos. Mag. Lett. 77, 39 (1998).

    Article  CAS  Google Scholar 

  11. Y-T. Cheng and C-M. Cheng, Surf. Coat. Technol. 133-134, 417 (2000).

    Article  Google Scholar 

  12. N. Huber, W.D. Nix, and H. Gao, Proc. R. Soc. (London) A 458, 1593 (2002).

    Article  CAS  Google Scholar 

  13. Y-T. Cheng and C-M. Cheng, J. Mater. Res. 14, 3493 (1999).

    Article  CAS  Google Scholar 

  14. O. Kraft, R. Schwaiger, and W.D. Nix, in Microelectromechanical Structures for Materials Research, edited by S. Brown, J. Gilbert, H. Guckel, R. Howe, G. Johnson, P. Krulevitch, and C. Muhlstein (Mater. Res. Soc. Symp. Proc. 518, Warrendale, PA, 1998), p. 39.

  15. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, J. Mater. Res. 3, 931 (1988).

    Article  Google Scholar 

  16. S.P. Baker and W.D. Nix, J. Mater. Res. 9, 3131 (1994).

    Article  CAS  Google Scholar 

  17. J.N. Florando and W.D. Nix, in Dislocations and Deformation Mechanisms in Thin Films and Small Structures, edited by O. Kraft, K. Schwarz, S.P. Baker, L.B. Freund, and R. Hull (Mater. Res. Soc. Symp. Proc. 673, Warrendale, PA, 2001), p. 1.9.1.

  18. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, in Thin Films: Stresses and Mechanical Properties, edited by J.C. Bravman, W.D. Nix, D.M. Barnett, and D.A. Smiths (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 87.

  19. R. Schwaiger and O. Kraft, Acta Mater. 51, 195 (2003).

    Article  CAS  Google Scholar 

  20. S. Hong, T.P. Weihs, J.C. Bravman, and W.D. Nix, in Thin Films: Stresses and Mechanical Properties, edited by J.C. Bravman, W.D. Nix, D.M. Barnett, and D.A. Smiths (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 93.

  21. W-M. Kuschke, A. Kretschmann, and R-M. Keller, J. Mater. Res. 13, 2962 (1998).

    Article  CAS  Google Scholar 

  22. B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  23. M. Hommel, O. Kraft, and E. Arzt, J. Mater. Res. 14, 2373 (1999).

    Article  CAS  Google Scholar 

  24. M. Hommel and O. Kraft, Acta Mater. 49, 3935 (2001).

    Article  CAS  Google Scholar 

  25. B. Lawn, Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, MA, 1993)

  26. CRC Handbook of Chemistry and Physics, 65th ed., edited by R.C. Weast (CRC Press, Boca Raton, FL, 1984).

  27. T.H. Courtney, Mechanical Behavior of Materials, 2nd ed. (McGraw-Hill, New York, 2000).

  28. J.J. Vlassak and W.D. Nix, J. Mech. Phys. Solids 42, 1223 (1994).

    Article  Google Scholar 

  29. T.J. Steer, G. Möbus, O. Kraft, T. Wagner, and B.J. Inkson, Thin Solid Films 413, 147 (2002).

    Article  CAS  Google Scholar 

  30. W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  31. R-M. Keller, S.P. Baker, and E. Arzt, J. Mater. Res. 13, 1307 (1998).

    Article  CAS  Google Scholar 

  32. Y-L. Shen, S. Suresh, M.Y. He, A. Bagchi, O. Kienzle, M. Rühle, and A.G. Evans, J. Mater. Res. 13, 1928 (1998).

    Article  CAS  Google Scholar 

  33. V. Weihnacht and W. Brückner, Acta Mater. 49, 2365 (2001).

    Article  CAS  Google Scholar 

  34. D. Tabor, Hardness of Metals (Clarendon Press, Oxford, U.K., 1951).

  35. M.M. Chaudhri, Acta Mater. 46, 3047 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwaiger, R., Kraft, O. Analyzing the mechanical behavior of thin films using nanoindentation, cantilever microbeam deflection, and finite element modeling. Journal of Materials Research 19, 31 (2004). https://doi.org/10.1557/jmr.2004.19.1.315

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.315

Navigation