Skip to main content
Log in

Hall–Petch relationship in pulsed-laser deposited nickel films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin-film mechanical properties can be measured using nanoindentation combined with detailed finite element modeling. This technique was used for a study of very fine grained Ni films, formed using pulsed-laser deposition on fused silica, sapphire, and Ni substrates. The grain sizes in the films were characterized by electron microscopy, and the mechanical properties were determined by ultra-low load indentation, analyzed using finite element modeling to separate the mechanical properties of the thin layers from those of the substrates. Some Ni films were deposited at high temperature or annealed after deposition to enlarge the grain sizes. The observed hardnesses and grain sizes in these thin Ni films are consistent with the empirical Hall–Petch relationship for grain sizes ranging from a few micrometers to as small as 10 nm, suggesting that deformation occurs preferentially by dislocation movement even in such nanometer-size grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Pharr and W.C. Oliver, MRS Bull. 17, 28 (1992).

    Article  Google Scholar 

  2. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  3. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  4. J.A. Knapp, S.M. Myers, D.M. Follstaedt, and G.A. Petersen, J. Appl. Phys. 86, 6547 (1999).

    Article  CAS  Google Scholar 

  5. J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, and T.A. Friedmann, J. Appl. Phys. 85, 1460 (1999).

    Article  CAS  Google Scholar 

  6. J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, T.A. Friedmann, J.W. Ager, O.R. Monteiro, and I.G. Brown, Surf. Coat. Technol. 104, 268 (1998).

    Article  Google Scholar 

  7. S.M. Myers, J.A. Knapp, D.M. Follstaedt, and M.T. Dugger, J. Appl. Phys. 83, 1256 (1998).

    Article  CAS  Google Scholar 

  8. J.A. Knapp, D.M. Follstaedt, J.C. Barbour, and S.M. Myers, Nucl. Inst. Meth. B 127, 935 (1997).

    Article  Google Scholar 

  9. J.A. Knapp, D.M. Follstaedt, and S.M. Myers, Int. J. Damage Mech. 12, 377 (2003).

    Article  CAS  Google Scholar 

  10. E.O. Hall, Phys. Soc. London B 64, 747 (1951).

    Article  Google Scholar 

  11. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  12. C. Xiao, R.A. Mirshams, S.H. Whang, and W.M. Yin, Mater. Sci. Eng. A 301, 35 (2001).

    Article  Google Scholar 

  13. F. Dalla Torre, H. Van Swygenhoven, and M. Victoria, Acta Mater. 50, 3957 (2002).

    Article  Google Scholar 

  14. A.B. Lebedev, Yu.A. Burenkov, V.I. Kopylov, A.E. Romanov, and V.G. Gryaznov, Philos. Mag. Lett. 73, 241 (1996).

    Article  CAS  Google Scholar 

  15. G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong, Scr. Metall. 20, 93 (1986).

    Article  CAS  Google Scholar 

  16. U. Erb, A.M. El-Sherik, G. Palumbo, and K.T. Aust, Nanostruct. Mater. 2, 383 (1993).

    Article  CAS  Google Scholar 

  17. A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust, Scr. Metall. Mater. 27, 1185 (1992).

    Article  CAS  Google Scholar 

  18. G.W. Nieman, J.R. Weertman, and R.W. Siegel, Nanostruct. Mater. 1, 185 (1992).

    Article  CAS  Google Scholar 

  19. C. Suryanarayana, D. Mukhopadhyay, S.N. Patankar, and F.H. Froes, J. Mater. Res. 7, 2114 (1992).

    Article  CAS  Google Scholar 

  20. C. Suryanarayana and F.H. Froes, Metall. Trans. A 23A, 1071 (1992).

    Article  CAS  Google Scholar 

  21. C.A. Schuh, T.G. Nieh, and T. Yamasaki, Scr. Mater. 46, 735 (2002).

    Article  CAS  Google Scholar 

  22. S.R. Agnew, B.R. Elliott, C.J. Youngdahl, K.J. Hemker, and J.R. Weertman, Mater. Sci. Eng. A 285, 391 (2000).

    Article  Google Scholar 

  23. J.R. Weertman. D. Farkas. K. Hemker, H. Kung, M. Mayo, R. Mitra. and H. Van Swygenhoven, MRS Bull. 24, (1999).

  24. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Acta Mater. 51, 387 (2003).

    Article  CAS  Google Scholar 

  25. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker, Philos. Mag. A 80, 1017 (2000).

    Article  CAS  Google Scholar 

  26. F. Ebrahimi, G.R. Bourne, M.S. Kelly, and T.E. Matthews, Nanostruct. Mater. 11, 343 (1999).

    Article  CAS  Google Scholar 

  27. R. Mitra, R.A. Hoffman. A. Madan, and J.R. Weertman, J. Mater. Res. 16, 1010 (2001).

    Article  CAS  Google Scholar 

  28. H. Van Swygenhoven, A. Caro, and D. Farkas, Scr. Mater. 44, 1513 (2001).

    Article  Google Scholar 

  29. A.A. Nazarov, Scr. Mater. 34, 697 (1996).

    Article  CAS  Google Scholar 

  30. V.G. Gryaznov, M.Yu. Gutkin, A.E. Romanov, and L.I. Trusov, J. Mater. Sci. 28, 4359 (1993).

    Article  CAS  Google Scholar 

  31. R.A. Masumura, P.M. Hazzledine, and C.S. Pande, Acta Mater. 46, 4527 (1998).

    Article  CAS  Google Scholar 

  32. T. Yamasaki, P. Schlossmacher, K. Ehrlich, and Y. Ogino, Nanostruct. Mater. 10, 375 (1998).

    Article  CAS  Google Scholar 

  33. S. Van Petegem, F. Dalla Torre, D. Segers, and H. Van Swygenhoven, Scr. Mater. 48, 17 (2003).

    Article  Google Scholar 

  34. D.M. Follstaedt, S.M. Myers, J.A. Knapp, M.T. Dugger, and T.A. Christenson, Surf. Coat. Technol. 104, 40 (1998).

    Article  Google Scholar 

  35. T.E. Buchheit, D.A. LaVan, J.R. Michael, T.R. Christenson, and S.D. Leith, Metall. Mater. Trans. A 33A, 539 (2002).

    Article  Google Scholar 

  36. J.A. Knapp, D.M. Follstaedt, and S.M. Myers, J. Appl. Phys. 79, 1116 (1996).

    Article  CAS  Google Scholar 

  37. J.A. Knapp, in Photons and Low Energy Particles in Surface Processing, edited by C.I.H. Ashby, J.H. Brannon, and S.W. Pang (Mater. Res. Soc. Symp. Proc, 236, Pittsburgh, PA, 1992), p. 473.

  38. M.W. Phaneuf, Micron 30, 277 (1999).

    Article  Google Scholar 

  39. Some of the indentation tests were performed at the Nano Instruments Innovation Center of MTS Systems Corp., Knoxville, TN.

  40. Metals Handbook (ASM, Metals Park, Ohio, 1990), Vol. 2, pp. 437, 1143.

  41. Atlas of Stress-Strain Curves (ASM, Metals Park, Ohio, 1987), p. 551.

  42. Nano SP1—Finite Element Modeling Software, Nano Instruments Innovation Center of MTS Systems Corp., Knoxville, TN.

  43. J. Lubliner, Plasticity Theory (Macmillan, New York, 1976).

  44. T.W. Capehart and Y-T. Cheng, J. Mater. Res. 18, 827 (2003).

    Article  CAS  Google Scholar 

  45. Mechanical Behavior of Materials, edited by F.A. McClintock and A.S. Argon (Addison-Wesley, Reading, MA, 1966), pp. 443–458.

  46. D.M. Follstaedt, J.A. Knapp, and S.M. Myers, Metall. Mater. Trans. A 34A, 935 (2003).

    Article  CAS  Google Scholar 

  47. R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, and D.M. Follstaedt, Acta Mater. 51, 1937 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knapp, J.A., Follstaedt, D.M. Hall–Petch relationship in pulsed-laser deposited nickel films. Journal of Materials Research 19, 21 (2004). https://doi.org/10.1557/jmr.2004.19.1.218

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.218

Navigation