Skip to main content
Log in

Size effect measurement and characterization in nanoindentation test

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation test at scale of hundreds of nanometers has shown that measured hardness increases strongly with decreasing indent depth, which is frequently referred to as the size effect. Usually, the size effect is displayed in the hardness-depth curves. In this study, the size effect is characterized in both the load–displacement curves and the hardness–depth curves. The experimental measurements were performed for single-crystal copper specimen and for surface-nanocrystallized Al-alloy specimen. Moreover, the size effect was characterized using the dislocation density theory. To investigate effects of some environmental factors, such as the effect of surface roughness and the effect of indenter tip curvature, the specimen surface profile and the indentation imprint profile for single-crystal copper specimen were scanned and measured using the atomic force microscopy technique. Furthermore, the size effect was characterized and analyzed when the effect of the specimen surface roughness was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  2. K.W. McElhaney, J.J. Vlassak, and W.D. Nix, J. Mater. Res. 13, 1300 (1998).

    Article  CAS  Google Scholar 

  3. M. Begley and J.W. Hutchinson, J. Mech. Phys. Solids 46, 1029 (1998).

    Article  Google Scholar 

  4. J.Y. Shu and N.A. Fleck, Int. J. Solids Struct. 35, 1363 (1998).

    Article  Google Scholar 

  5. W.J. Poole, M.F. Ashby, and N.A. Fleck, Scr. Metall. Mater. 34, 559 (1996).

    Article  CAS  Google Scholar 

  6. M. Atkinson, J. Mater. Res. 10, 2908 (1995).

    Article  CAS  Google Scholar 

  7. Q. Ma and D.R. Clarke, J. Mater. Res. 10, 853 (1995).

    Article  CAS  Google Scholar 

  8. N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman, Acta Metall. Mater. 41, 2855 (1993).

    Article  CAS  Google Scholar 

  9. Y. Wei, X. Wang, X. Wu, and Y. Bai, Science in China (Series A) 44, 74 (2001).

    Article  CAS  Google Scholar 

  10. Y. Wei, X. Wang, M. Zhao, C.M. Cheng, and Y.L. Bai, Acta Mech. Sin. 19, 59 (2003).

    Article  Google Scholar 

  11. Y. Huang, Z. Xue, H. Gao, W.D. Nix, and Z.C. Xia, J. Mater. Res. 15, 1786 (2000).

    Article  CAS  Google Scholar 

  12. Z. Xue, Y. Huang, K.C. Hwang, and M. Li, J. Eng. Mater. Technol. 124, 371 (2002).

    Article  Google Scholar 

  13. J.G. Swadener, E.P. George, and G.M. Pharr, J. Mech. Phys. Solids 50, 681 (2002).

    Article  Google Scholar 

  14. Y. Wei and J.W. Hutchinson, J. Mech. Phys. Solids 51, 2037 (2003, in press).

    Article  Google Scholar 

  15. N.A. Fleck and J.W. Hutchinson, Adv. Appl. Mech. 33, 295 (1997).

    Article  Google Scholar 

  16. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson, J. Mech. Phys. Solids 47, 1239 (1999).

    Article  Google Scholar 

  17. Y. Huang, H. Gao, W.D. Nix, and J.W. Hutchinson, J. Mech. Phys. Solids 48, 99 (2000).

    Article  Google Scholar 

  18. A. Iost and R. Bigot, J. Mater. Sci. 31, 3573 (1996).

    Article  CAS  Google Scholar 

  19. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  20. K. Lu and J. Lu, J. Mater. Sci. Technol. 15, 193 (1999).

    Article  CAS  Google Scholar 

  21. Y.T. Cheng and C.M. Cheng, J. Mater. Res. 13, 1059 (1998).

    Article  CAS  Google Scholar 

  22. H.J. Weiss, Phys. Status Solidi A129, 167 (1992).

    Article  Google Scholar 

  23. M.S. Bobji and S.K. Biswas, J. Mater. Res. 14, 2259 (1999).

    Article  CAS  Google Scholar 

  24. Y.T. Cheng and C.M. Cheng, Int. J. Solids Struct. 36, 1231 (1999).

    Article  Google Scholar 

  25. M.C. Shaw, in Mechanical Behavior of Materials, edited by F.A. McClintock and A.S. Argon (Addison-Wesley, Reading, MA, 1966), p. 443.

  26. M.F. Ashby, Philos. Mag. 21, 399 (1970).

    Article  CAS  Google Scholar 

  27. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Acta Metall. Mater. 42, 475 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueguang Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Wang, X. & Zhao, M. Size effect measurement and characterization in nanoindentation test. Journal of Materials Research 19, 208–217 (2004). https://doi.org/10.1557/jmr.2004.19.1.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.208

Navigation