Skip to main content

Advertisement

Log in

An energy-based method for analyzing instrumented spherical indentation experiments

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using dimensional analysis and finite element calculation, we studied spherical indentation in elastic–plastic solids with work hardening. We report two previously unknown relationships between hardness, reduced modulus, indentation depth, indenter radius, and work of indentation. These relationships, together with the relationship between initial unloading stiffness and reduced modulus, provide an energy-based method for determining contact area, reduced modulus, and hardness of materials from instrumented spherical indentation measurements. This method also provides a means for calibrating the effective radius of imperfectly shaped spherical indenters. Finally, the method is applied to the analysis of instrumented spherical indentation experiments on copper, aluminum, tungsten, and fused silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E10-01 Standard Test Method for BRINELL Hardness of Metallic Materials (ASTM International, West Conshohocken, 2003).

  2. D. Tabor, The Hardness of Metals (Oxford University Press, London, U.K., 1951); Philosophical Magazine A 74, 1207 (1996).

  3. B.W. Mott, Micro-indentation Hardness Testing (Butterworths, London, U.K., 1956).

  4. A.C. Fischer-Cripps, Nanoindentation (Springer-Verlag, New York, 2002).

  5. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  6. J.S. Field and M.V. Swain, J. Mater. Res. 8, 297 (1993); J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  7. F.M. Haggag and G.E. Lucas, Metall. Trans. 14A, 1607 (1983).

    Article  Google Scholar 

  8. B. Taljat, T. Zacharia, and F.M. Haggaga, J. Mater. Res. 12, 965 (1997).

    Article  CAS  Google Scholar 

  9. N. Huber and C. Tsakmakis, J. Mech. Phys. Solids 47, 1569 , 1589 (1999).

    Article  Google Scholar 

  10. J. Alcalá, A.E. Giannakopoulos, and S. Suresh, J. Mater. Res. 13, 1390 (1998).

    Article  Google Scholar 

  11. S. Kucharski and Z. Mróz, J. Eng. Mater. Technol. 123, 235 (2001).

    Article  Google Scholar 

  12. G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, and J.L. Hay, Thin Solid Films 398–399, 331 (2001).

    Article  Google Scholar 

  13. A.L. Norbury and T. Samuel, J. Iron Steel Inst. 117, 673 (1928).

    Google Scholar 

  14. M.M. Chaudhri and M. Winter, J. Phys. D.: Appl. Phys. 21, 370 (1988).

    Article  CAS  Google Scholar 

  15. Y-T. Cheng and C-M. Cheng, Philos. Mag. Lett. 78, 115 (1998).

    Article  CAS  Google Scholar 

  16. A. Bolshakov and G.M. Pharr, J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  17. Y-T. Cheng and C-M. Cheng, J. Appl. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  18. Y-T. Cheng, Z. Li, and C-M. Cheng, Philos. Mag. 82, 1821 (2002).

    Article  CAS  Google Scholar 

  19. G.I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996).

  20. W. Ni, Y-T. Cheng, C-M. Cheng, and D.S. Grummon, GM Research Publication R&D-9522 (April 23, 2003).

  21. Y-T. Cheng and C-M. Cheng, J. Mater. Res. 14, 3493 (1999).

    Article  CAS  Google Scholar 

  22. Y-T. Cheng and C-M. Cheng, Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  23. A.E. Giannakopoulos and S. Suresh, Scr. Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  24. C-M. Cheng and Y-T. Cheng, Appl. Phys. Lett. 71, 2623 (1997).

    Article  CAS  Google Scholar 

  25. K.A. Gschneidner, Solid State Physics 16, 275 (1964).

    Article  CAS  Google Scholar 

  26. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (The M.I.T. Press, Cambridge, MA, 1971).

  27. General Electric Fused Quartz Products Technical Data, general catalog number 7705–7725 (April 1985).

  28. J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  29. W.J. Poole, M.F. Ashby, and N.A. Fleck, Scr. Mater. 34, 559 (1996).

    Article  CAS  Google Scholar 

  30. K.W. McElhaney, J.J. Vlassak, and W.D. Nix, J. Mater. Res. 13, 1300 (1998).

    Article  CAS  Google Scholar 

  31. W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeryer, and M.I. Baskes, ASME J. Appl. Mech. 69, 433 (2002).

    Article  CAS  Google Scholar 

  32. W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  33. J.G. Swadener, E.P. George, and G.M. Pharr, J. Mech. Phys. Solids 50, 681 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, W., Cheng, YT., Cheng, CM. et al. An energy-based method for analyzing instrumented spherical indentation experiments. Journal of Materials Research 19, 149–157 (2004). https://doi.org/10.1557/jmr.2004.19.1.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.149

Navigation