Skip to main content
Log in

An efficient way of extracting creep properties from short-time spherical indentation tests

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Indentation as a means to extract creep properties has the advantage that it can be applied directly to micro/nano-structures. Many studies on indentation creep reported at least partially poor agreement with creep parameters derived from uniaxial test. One important reason for the incompatibility is the neglect of transient creep. Another one is the choice of equivalent stress and strain measures to relate the different material responses. Applying a material model that accounts for transient creep effects we propose an efficient method for deriving creep properties from short-time spherical indentation tests. We first determine a subsurface point where the material response is very close to that observed in uniaxial tests. We then map the load–displacement data to the material response, expressed in terms of two dimensionless variables, at this point. Converting the dimensionless variables data to stress, strain, and strain rate data, we finally determine the material’s creep coefficient and exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. C.D. Gu, J.S. Lian, Q. Jiang, and W.T. Zheng: Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D: Appl. Phys. 40, 7440 (2007).

    Article  CAS  Google Scholar 

  2. B-G. Yoo, J-H. Oh, Y-J. Kim, K-W. Park, J-C. Lee, and J-i. Jang: Nanoindentation analysis of time-dependent deformation in as-cast and annealed Cu–Zr bulk metallic glass. Intermetallics 18, 1898 (2010).

    Article  CAS  Google Scholar 

  3. B-G. Yoo, Y-J. Kim, J-H. Oh, U. Ramamurty, and J-i. Jang: Room temperature creep in amorphous alloys: Influence of initial strain and free volume. Scr. Mater. 63, 1205 (2010).

    Article  CAS  Google Scholar 

  4. C-C. Huang, M-K. Wei, and S. Lee: Transient and steady-state nanoindentation creep of polymeric materials. Int. J. Plast. 27, 1093 (2011).

    Article  CAS  Google Scholar 

  5. L. Shen, W.C.D. Cheong, Y.F. Foo, and Z. Chen: Nanoindentation creep of tin and aluminum: A comparative study between constant load and constant strain rate methods. Mater. Sci. Eng., A 532, 505 (2012).

    Article  CAS  Google Scholar 

  6. I-C. Choi, Y-J. Kim, M-J. Seok, B-G. Yoo, J-Y. Kim, Y. Wang, and J-i. Jang: Nanoscale room temperature creep of nanocrystalline nickel pillars at low stress. Int. J. Plast. 41, 53 (2013).

    Article  CAS  Google Scholar 

  7. A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna: Indentation of a power law creeping solid. Proc. R. Soc. A 441, 97 (1993).

    Google Scholar 

  8. B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  9. Z.S. Ma, S.G. Long, Y.C. Zhou, and Y. Pan: Indentation scale dependence of tip-in creep behavior in Ni thin films. Scr. Mater. 59, 195 (2008).

    Article  CAS  Google Scholar 

  10. Z. Ma, S. Long, and Y. Pan: Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films. J. Mater. Sci. 43, 5952 (2008).

    Article  CAS  Google Scholar 

  11. I-C. Choi, B-G. Yoo, Y-J. Kim, M-J. Seok, Y. Wang, and J-i. Jang: Estimating the stress exponent of nanocrystalline nickel: Sharp vs. spherical indentation. Scr. Mater. 65, 300 (2011).

    Article  CAS  Google Scholar 

  12. C.L. Wang, Y.H. Lai, J.C. Huang, and T.G. Nieh: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 60, 175 (2010).

    Article  Google Scholar 

  13. M. Fujiwara and M. Otsuka: Indentation creep of β-Sn and Sn-Pb eutectic alloy. Mater. Sci. Eng., A 319–321, 929 (2001).

    Article  Google Scholar 

  14. C.Z. Liu and J. Chen: Nanoindentation of lead-free solders in microelectronic packaging. Mater. Sci. Eng., A 448, 340 (2007).

    Article  Google Scholar 

  15. R. Mahmudi, A.R. Geranmayeh, H. Khanbareh, and N. Jahangin: Indentation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solder alloys. Mater. Des. 30, 574 (2009).

    Article  CAS  Google Scholar 

  16. R. Mahmudi, M. Pourmajidian, A.R. Geranmayeh, S. Gorgannejad, and S. Hashemizadeh: Indentation creep of lead-free Sn–3.5Ag solder alloy: Effects of cooling rate and Zn/Sb addition. Mater. Sci. Eng., A 565, 236 (2013).

    Article  CAS  Google Scholar 

  17. V.M.F. Marques, B. Wunderle, C. Johnston, and P.S. Grant: Nanomechanical characterization of Sn–Ag–Cu/Cu joints—Part 2: Nanoindentation creep and its relationship with uniaxial creep as a function of temperature. Acta Mater. 61, 2471 (2013).

    Article  CAS  Google Scholar 

  18. H. Tagaki, M. Dao, M. Fujiwara, and M. Otsuka: Experimental and computational creep characterization of Al–Mg solid-solution alloy through instrumented indentation. Philos. Mag. 83, 3959 (2003).

    Article  Google Scholar 

  19. A.R. Geranmayeh and R. Mahmudi: Indentation creep of a cast Mg–6Al–1Zn–0.7Si alloy. Mater. Sci. Eng., A 614, 311 (2014).

    Article  CAS  Google Scholar 

  20. W-M. Chen, Y-T. Cheng, and M. Li: Indentation of power-law creep solids by self-similar indenters. Mater. Sci. Eng., A 527, 5613 (2010).

    Article  Google Scholar 

  21. D.S. Stone, J.E. Jakes, J. Puthoff, and A.A. Elmustafa: Analysis of indentation creep. J. Mater. Res. 25, 611 (2010).

    Article  CAS  Google Scholar 

  22. C. Su, E.G. Herbert, S. Sohn, J.A. LaManna, W.A. Oliver, and G.M. Pharr: Measurement of power-law creep parameters by instrumented indentation methods. J. Mech. Phys. Solids 61, 517 (2013).

    Article  Google Scholar 

  23. J. Dean, J. Campbell, G. Aldrich-Smith, and T.W. Clyne: A critical assessment of the “stable indenter velocity” method for obtaining the creep stress exponent from indentation data. Acta Mater. 80, 56 (2014).

    Article  CAS  Google Scholar 

  24. M.E. Cordova and Y-L. Shen: Indentation versus uniaxial power-law creep: A numerical assessment. J. Mater. Sci. 50, 1394 (2015).

    Article  CAS  Google Scholar 

  25. Z.S. Ma, Y.C. Zhou, S.G. Long, and C. Lu: Characterization of stress-strain relationships of elastoplastic materials: An improved method with conical and pyramidal indenters. Mech. Mater. 54, 113 (2012).

    Article  Google Scholar 

  26. H. Takagi and M. Fujiwara: Set of conversion coefficients for extracting uniaxial creep data from pseudo-steady indentation creep test results. Mater. Sci. Eng., A 602, 98 (2014).

    Article  CAS  Google Scholar 

  27. N. Ogbonna, N.A. Fleck, and C.F. Cocks: Transient creep analysis of ball indentation. Int. J. Mech. Sci. 37, 1179 (1995).

    Article  Google Scholar 

  28. R. Goodall and T.W. Clyne: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 (2006).

    Article  CAS  Google Scholar 

  29. C.L. Wang, M. Yhang, and T.G. Nieh: Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J. Phys. D: Appl. Phys. 42, 1 (2009).

    Google Scholar 

  30. J. Dean, A. Bradbury, G. Aldrich-Smith, and T.W. Clyne: A procedure for extracting primary and secondary creep parameters from nanoindentation data. Mech. Mater. 65, 124 (2013).

    Article  Google Scholar 

  31. V. Maier, B. Merle, M. Göken, and K. Durst: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28, 1177 (2013).

    Article  CAS  Google Scholar 

  32. Abaqus: User’s Manual, Version 6.13 (Dassault Systèmes Simulia Corp, Providence, RI, 2013).

  33. H. Lee, J.H. Lee, and G.M. Pharr: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. NRF-2012 R1A2A2A 01046480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungyil Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rickhey, F., Lee, J.H. & Lee, H. An efficient way of extracting creep properties from short-time spherical indentation tests. Journal of Materials Research 30, 3542–3552 (2015). https://doi.org/10.1557/jmr.2015.322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.322

Navigation