Skip to main content
Log in

Evaluation of MoS2 Films Fabricated by Metal-Organic Chemical Vapor Deposition Using a Novel Mo Precursor i-Pr2DADMo(CO)3 Under Various Deposition Conditions

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) is expected to be applied for devices in various fields owing to its unique characteristics. Establishing a high-productivity manufacturing method which yields high quality films is an important and unresolved issue for the practical applications of MoS2. Among different techniques conducted by researchers all over the world, our approach is cold-wall metal-organic chemical vapor deposition, and we previously reported the deposition of MoS2 with i-Pr2DADMo(CO)3, a novel Mo precursor [S. Ishihara, et al., MRS Advances 3, 379–384 (2018).]. In this study, with the aim of further improving the quality of the MoS2 film using this new Mo precursor, various film formation conditions were controlled and the influence on the film quality was investigated. X-ray photoelectron spectroscopy, atomic force microscopy and Raman spectroscopy were used as evaluation techniques of the samples. As a result, mm-scale uniform film was formed with the deposition time less than 30 min. at temperature as low as 400 °C to 500 °C. It was revealed that maintaining low Mo/S supply ratio (SRMo/S) is crucial in fabricating high quality films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, PNAS102,30,10451–10453(2005).

    Article  CAS  Google Scholar 

  2. V. Forsberg, R. Zhang, J. Bäckström, C. Dahlström, B. Andres, M. Norgren, M. Andersson, M. Hummelgård, and H. Olin, PLoS One11,4, e0154522(2016).

    Article  Google Scholar 

  3. D. Fu, X. Zhao, Y. Y. Zhang, L. Li, H. Xu, A. R. Jang, S. I. Yoon, P. Song, S. M. Poh, T. Ren, Z. Ding, W. Fu, T. J. Shin, H. S. Shin, S. T. Pantelides, W. Zhou, K. P. Loh, J. Am. Chem. Soc139, 27, 9392–9400(2017).

    Article  CAS  Google Scholar 

  4. S. Ishihara, Y. Hibino, N. Sawamoto, K. Suda, T. Ohashi, K. Matsuura, H. Machida, M. Ishikawa, H. Sudoh, H. Wakabayashi, and A. Ogura, JJAP55, 04EJ07 (2016).

    Google Scholar 

  5. S. Ishihara, Y. Hibino, N. Sawamoto, T. Ohashi, K. Matsuura, H. Machida, M. Ishikawa, H. Wakabayashi, and A. Ogura, ECS Journal of Solid State Science and Technology, 5, 11, Q3012–Q3015(2016).

    Article  CAS  Google Scholar 

  6. C. Lunceford, E. Borcean, and J. Drucker, Cryst. Growth Des.16, 2, 988–995 (2016).

    Article  CAS  Google Scholar 

  7. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller and J. C. Hone, Nature Materials12, 554–561(2013).

    Article  Google Scholar 

  8. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J. C. Idrobo, P. M. Ajayan, and J. Lou, Nature Materials12, 754–759(2013).

    Article  CAS  Google Scholar 

  9. D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. F. Morral, A. Radenovic, A. Kis, ACS Nano9, 4, 4611–4620(2015).

    Article  CAS  Google Scholar 

  10. A. George, C. Neumann, D. Kaiser, R. Mupparapu, T. Lehnert, U. Hübner, Z. Tang, A. Winter, U. Kaiser, I. Staude and A. Turchanin, J. Phys. Mater2, 016001(2019).

    Article  Google Scholar 

  11. J. Mun, Y. Kim, I. S. Kang, S. K. Lim, S. J. Lee, J. W. Kim, H. M. Park, T. Kim, and S. W. Kang, Scientific Reports6, 21854 (2016).

    Article  CAS  Google Scholar 

  12. T. W. Kim, J. Mun, H. Park, D. Joung, M. Diware, C. Won, J. Park, S. H. Jeong, and S. W. Kang, Nanotechnology 28, 18LT01(2017).

    Article  Google Scholar 

  13. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, J. Park, Nature520, 656–660(2015).

    Article  CAS  Google Scholar 

  14. M. Marx, A. Grundmann, Y.-R. Lin, D. Andrzejewski, T. Kummell, G. Bacher, M. Heuken, H. Kalisch, and A. Vescan, Journal of ELECTRONIC MATERIALS, 47, No. 2(2018).

  15. J. Mun, H. Park, J. Park, D. Joung, D. Joung, S. K. Lee, J. Leem, J. M. Myoung, J. Park, S. H. Jeong, W. Chegal, S. W. Nam, and S. W. Kang, ACS Appl. Electron. Mater1, 4, 608–616 (2019).

    Article  CAS  Google Scholar 

  16. S. Ishihara, Y. Hibino, N. Sawamoto, H. Machida, H. Wakabayashi, A. Ogura, MRS Advances3, 379–384 (2018).

    Article  CAS  Google Scholar 

  17. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, Adv. Funct. Mater., 22, 1385–1390 (2012).

    Article  CAS  Google Scholar 

  18. D. F. Mitchell, K. B. Clark and J. A. Bardwell, W. N. Lennard, G. R. Massoumi and I. V. Mitchell, Surf. Interface Anal., 21, 44–50 (1994).

    Article  CAS  Google Scholar 

  19. H. Li, H. Wu, S. Yuan, and H. Qian, Scientific Reports6, 21171 (2016).

    Article  CAS  Google Scholar 

  20. S. Ishihara, Y. Hibino, Y. Oyanagi, N. Sawamoto, T. Ohashi, K. Matsuura, H. Wakabayashi, and A. Ogura, MRS Fall Meeting & Exhibit, EP03.05.32(2018).

  21. D. Ganta, S. Sinha, and Richard T. Haasch, Surface Science Spectra21, 19(2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, K., Hibino, Y., Oyanagi, Y. et al. Evaluation of MoS2 Films Fabricated by Metal-Organic Chemical Vapor Deposition Using a Novel Mo Precursor i-Pr2DADMo(CO)3 Under Various Deposition Conditions. MRS Advances 5, 1643–1652 (2020). https://doi.org/10.1557/adv.2020.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.187

Navigation