Skip to main content
Log in

Comparison of band -fitting and Wannier-based model construction for WSe2

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenide materials MX2 (M = Mo;W;X = S; Se) are being thoroughly studied due to their novel two-dimensional structure, that is associated with exceptional optical and transport properties. From a computational point of view, Density Functional Theory simulations perform very well in these systems and are an indispensable tool to predict and complement experimental results. However, due to the time and length scales where even the most efficient DFT implementations can reach today, this methodology suffers of stringent limitations to deal with finite temperature simulations or electron-lattice coupling when studying excitation states: the unit cells required to study, for instance, systems with thermal fluctuations or large polarons would require a large computational power. Multi-scale techniques, like the recently proposed Second Principles Density Functional Theory, can go beyond these limitations but require the construction of tight-binding models for the systems under investigation. In this work, we compare two such methods to construct the bands of WSe2. In particular, we compare the result of (i) Wannier-based model construction with (ii) the band fitting method of Liu et al.,[1] where the top of the valence band and the bottom of the conduction band are modeled by three bands symmetrized to have mainly Tungsten dz2, dxy and dx2-y2character. Our results emphasize the differences between these two approaches and how band fitting model construction leads to an overestimation of the localization of the real-space basis in a tight-binding representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gui-Bin Liu, Wen-Yu Shan, Yugui Yao, Yao Wang and Di Xiao, Phys. Rev. B 88, 085433 (2013).

    Article  Google Scholar 

  2. Jason S. Ross, Sanfeng Wu, Hongyi Yu, Nirmal J. Ghimire, Aaron M. Jones, Grant Aivazian, Jiaqiang Yan, David G. Mandrus, Di Xiao, Wang Yao and Xiaodong Xu, Nat Commun 4, 1474 (2013).

    Article  Google Scholar 

  3. Sefaattin Tongay, Jian Zhou Can Ataca, Kelvin Lo, Tyler S. Matthews, Jingbo Li, Je_rey C. Grossman, Junqiao Wu, Nano Lett., 12, 11, 5576–5580 (2012).

    Article  CAS  Google Scholar 

  4. Hualing Zeng, Gui-Bin Liu, Junfeng Dai, Yajun Yan, Bairen Zhu, Ruicong He, Xie Lu, Shijie Xu, Xianhui Chen, Yao Wang and Xiaodong Cui, Scienti_c Reports 3, 1608 (2010).

    Article  Google Scholar 

  5. Ming-Wei Lin, Lezhang Liu, Qing Lan, Xuebin Tan, Kulwinder S Dhindsa, Peng Zeng, Vaman M Naik, Mark MingCheng Cheng and Zhixian Zhou, J. Phys. D: Appl. Phys. 45345102 (2012).

    Google Scholar 

  6. Wenzhong Bao, Xinghan Cai, Dohun Kim, Karthik Sridhara & Michael S. Fuhrer, Appl. Phys. Lett. 102, 042104(2013).

    Article  Google Scholar 

  7. Stefano Larentis, Babak Fallahazad & Emanuel Tutuc,Appl. Phys. Lett. 101, 223104 (2012).

    Article  Google Scholar 

  8. Xin Luo, Yanyuan Zhao, Jun Zhang, Minglin Toh, Christian Kloc, Qihua Xiong & Su Ying Quek, Phys. Rev. B,88, 195313 (2013).

    Article  Google Scholar 

  9. Rafael de Alencar Rocha, Wiliam Ferreira da Cunhaand Luiz Antonio Ribeiro Jr., J. Mol. Modeling 25, 290 (2019).

    Article  Google Scholar 

  10. Feliciano Giustino, Rev. Mod. Phys. 89, 015003 (2017).

    Article  Google Scholar 

  11. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  CAS  Google Scholar 

  12. Ian David Brown, Chem. 109, 12, 6858–6919 (2009).

    Google Scholar 

  13. T. J. Giese and D. M. York, TheorChem Acc. 131, 1145(2012).

    Google Scholar 

  14. J. Spaek, Phys. Rev. B 37, 533 (1988).

    Article  Google Scholar 

  15. W. Zhong, David Vanderbilt, and K. M. Rabe, Phys. Rev.B 52, 6301 (1995).

    Article  CAS  Google Scholar 

  16. Pablo Garcia-Fernandez, Jacek C. Wojde, Iiguez Jorge, and Javier Junquera, Phys. Rev. B 93, 195137 (2016).

    Article  Google Scholar 

  17. Jacek C Wojde, Patrick Hermet, Mathias P Ljungberg, Philippe Ghosez and Jorge iguez, J. Phys.: Condens. Matter 25 305401 (2013).

    Google Scholar 

  18. A. A. Mosto_, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685(2008).

    Article  Google Scholar 

  19. Jose M. Soler, Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon, Daniel SanchezPortal, J. Phys.: Condens. Matter 14 2745 (2002).

    CAS  Google Scholar 

  20. Nicola Marzari, Arash A. Mosto, Jonathan R. Yates, Ivo Souza, and David Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

    Article  CAS  Google Scholar 

  21. John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  22. Leonard Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  CAS  Google Scholar 

  23. N. Troullier and Jos Lus Martins, Phys. Rev. B 43, 1993 (1991).

    Article  CAS  Google Scholar 

  24. Javier Junquera, Oscar Paz, Daniel Sanchez-Portal, and Emilio Artacho, Phys. Rev. B 64, 235111 (2001).

    Article  Google Scholar 

  25. Hendrik J. Monkhorst and James D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  26. Juana Moreno and Jos_e M. Soler, Phys. Rev. B 45, 13891 (1992).

    Article  CAS  Google Scholar 

  27. SCALE-UP webpage https://www.secondprinciples.unican.es/. (Accessed 4 February 2020)

  28. Swastibrata Bhattacharyya and Abhishek K. Singh, Phys. Rev. B 86, 075454 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sifuna, J., García-Fernández, P., Manyali, G.S. et al. Comparison of band -fitting and Wannier-based model construction for WSe2. MRS Advances 5, 2281–2290 (2020). https://doi.org/10.1557/adv.2020.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.111

Navigation