Skip to main content
Log in

A Three Dimensional Unit Cell Model for the Analysis of Thermal Residual Stresses in Polymer Composites Reinforced with Wavy Carbon Nanotubes

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This paper presents a numerical approach to predict the thermal residual stresses in polymer nanocomposites reinforced with a periodic array of wavy carbon nanotubes. A three dimensional unit cell model is established to accurately account for the waviness of the nanotube. Periodic boundary conditions are determined for the unit cell with a pair of curved surfaces. Appropriate methods to evaluate the macroscopic stresses and strains are also determined for the unit cell model in which the interior pores of the nanotubes are explicitly included. It is demonstrated that the macroscopic behavior of the nanocomposites is orthotropic due to the symmetries manifested. By employing material properties of the two constituents, the thermal residual stresses and strains induced by high temperature curing and cooling-down are predicted for an epoxy/wavy-nanotube composite. It is also demonstrated that the curing process tends to increase the waviness of the nanotube and the waviness has a significant influence on the distribution of the microscopic residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Moniruzzaman and K.I. Winey Macromolecules, 39, 5194–5205(2006).

    Article  CAS  Google Scholar 

  2. R.F. Gibson Compos. Struct.92, 2793–2810(2010).

    Article  Google Scholar 

  3. R.A. Fraser, K. Stoeffler, B. Ashrafi, Y.F. Zhang and B. Simard ACS Appl. Mater. Inter.4, 1990–1997(2012).

    Article  CAS  Google Scholar 

  4. J.N. Dastgerdi, G. Marquis and M. Salimi Compos. Sci. Technol.86, 164–169(2013).

    Article  Google Scholar 

  5. C.H. Tsai, C. Zhang, D.A. Jack, R. Liang and B. Wang Compos. Part-B: Eng.42, 62–70(2011).

    Article  Google Scholar 

  6. V. Anumandla and R.F. Gibson Compos. Part-A: Appl. Sci. Manuf.37, 2178–2185(2006).

    Article  Google Scholar 

  7. M.K. Hassanzadeh-Aghdam, R. Ansari and A. Darvizeh J. Compos. Mater.51, 2899–2912(2017).

    Article  CAS  Google Scholar 

  8. H.M. Hsiao and I.M. Daniel Compos. Part-A: Appl. Sci. Manuf.27, 931–941(1996).

    Article  Google Scholar 

  9. J. Michel, H. Moulinec and P. Suquet Comput. Methods Appl. Mech. Engrg.172, 109–143(1999).

    Article  Google Scholar 

  10. N. Ohno, K. Ikenoya, D. Okumura and T. Matsuda Int. J. Solids Struct.49, 2799–2806 (2012).

    Article  CAS  Google Scholar 

  11. Z. Xia, Y. Zhang and F. Ellyin Int. J. Solids Struct.40, 1907–1921(2003).

    Article  Google Scholar 

  12. F.T. Fisher, R.D. Bradshaw and L.C. Brinson Compos. Sci. Technol.63, 1689–1703(2003).

    Article  CAS  Google Scholar 

  13. S. Paunikar and S. Kumar Comput. Mater. Sci.95, 21–28(2014).

    Article  CAS  Google Scholar 

  14. M. Farsadi, A. Ochsner and M. Rahmandoust J. Compos. Mater.47, 1425–1434(2013).

    Article  Google Scholar 

  15. H.M. Hsiao and I.M. Daniel Compos. Sci. Technol.56, 581–593(1996).

    Article  CAS  Google Scholar 

  16. M.R. Garnich and G. Karami J. Compos. Mater.38, 273–292(2004).

    Article  Google Scholar 

  17. Y. Zhang and Z. Xia. CMC-Comput. Mater. Con.2, 213–226(2005).

    Google Scholar 

  18. Y. Zhang, Z. Xia and F. Ellyin Compos. Sci. Technol.64, 1613–1621(2004).

    Article  CAS  Google Scholar 

  19. R. Luciano and E. Sacco Eur. J. Mech. A-Solid.17, 599–617(1998).

    Article  Google Scholar 

  20. Y. Zhang, Z. Xia and F. Ellyin Int. J. Solids Struct.45, 5322–5336(2008).

    Article  Google Scholar 

  21. L. Deng, R.J. Young, I.A. Kinloch, R. Sun, G. Zhang, L. Noé and M. Monthioux Appl. Phys. Lett.104, 051907(2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Johnston, A., Yousefpour, A. et al. A Three Dimensional Unit Cell Model for the Analysis of Thermal Residual Stresses in Polymer Composites Reinforced with Wavy Carbon Nanotubes. MRS Advances 5, 1739–1748 (2020). https://doi.org/10.1557/adv.2019.440

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.440

Navigation