Skip to main content
Log in

Atomistic Modeling of an MFM ferroelectric capacitor made of HfO2:Si

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Using ab initio simulation, we study a ferroelectric layer of a few nanometers made of hafnia (HfO2) under the influence of Si doping with TiN electrodes. We evaluate the orthorhombic phase of Pca21 symmetry, its ferroelectric switching and the incidence of doping with silicon. We show that the ferroelectric switching can involve a 90° characteristic angle with corresponding activation energy which is lowered by a factor three due to Si doping at 3% at. A full MFM (Metal-Ferroelectric-Metal) model is derived in order to simulate finite-size effects. This model is compatible with a reversal of a polar HfO2:Si with a (111) preferential orientation. Validity and usefulness of such a model are discussed for ferroelectric devices optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Applied Physics Letter 99, 102903 (2011)

    Article  Google Scholar 

  2. J. Müller, P. Polakowski, S. Riedel, S. Mueller, in Proceedings VLSI Technology, p25–26 (2012).

  3. Y. Goh and S. Jeon, Nanotechnology, 29, p335201 (2018)

    Article  Google Scholar 

  4. S. Salahuddin, and S. Datta, Nanoletters, 8, p405 (2008).

    Article  Google Scholar 

  5. T. François, J. Coignus, L. Grenouillet, M. Barlas, B. Bessif, N. Vaxelaire, H. Boutry, M. Coig, E. Vilain, N. Rambal, J.-M. Pedini, Y. Morand, F. Mazen, E. Nowak, F. Gaillard, SSDM (2018) to appear in JJAP (2019).

  6. J. Soler, E. Artacho, J. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, Journal of Physics: Condensed Matter, 14, p2745 (2002)

    Google Scholar 

  7. S. R. Bahn and K. W. Jacobsen, Computing in Science and Engineering, 4, p56 (2002)

    Article  Google Scholar 

  8. R. Batra, H. Doan Tran, and R. Ramprasad, Applied Physics Letter, 108, 172902 (2016)

    Article  Google Scholar 

  9. Mittmann, T., Materano, M., Lomenzo, P. D., Park, M. H., Stolichnov, I., Cavalieri, M., Zhou, C., Chung, C.-C., Jones, J. L., Szyjka, T., Müller, M., Kersch, A., Mikolajick, T., Schroeder, U., Advanced Material Interfaces, 1900042 (2019)

  10. T. Maeda, B. Magyari-Kope, Y. Nishi, IEEE IMW 2017, 7939087 (2017)

  11. S. E. Reyes-Lillo, K.F. Garrity, and K.M Rabe, Physical Review B 90, 140103(R) (2014)

    Article  Google Scholar 

  12. S. Clima, D.J. Wouters, C. Adelmann, T. Schenk, U. Schroeder, M. Jurczak, and G. Pourtois, Applied Physics Letters 104, 092906 (2014)

    Article  Google Scholar 

  13. K.-H. Xue, H.-L. Su, Y. Li, H.-J. Sun, W.-F. He, T.-C. Chang, L. Chen, D. W. Zhang, X.-S. Miao, Journal of Applied Physics 124, 024103 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaise, P. Atomistic Modeling of an MFM ferroelectric capacitor made of HfO2:Si. MRS Advances 4, 2619–2625 (2019). https://doi.org/10.1557/adv.2019.333

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.333

Navigation