Skip to main content
Log in

Surface Analysis by Laser Ionization

  • Materials Microanalysis
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

An overview is presented of a recently developed surface analysis method that combines (1) desorption of neutral atoms and molecules from a sample, typically by sputtering, (2) efficient uniform ionization close to but above the surface by an intense ultraviolet laser beam, and (3) time-of-flight mass spectrometry. This technique, surface analysis by laser ionization, or SALI, provides extremely efficient and sensitive quantitative analysis of surfaces and materials with high depth resolution. Essentially any type of material can be analyzed as evidenced by the examples presented here: the Au-GaAs system, a phosphor-silicate glass, and a bulk polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Thomson, Philos. Mag. 20 (1910) p. 252.

    Google Scholar 

  2. See, e.g., Secondary Ion Mass Spectrometry SIMS V, edited by A. Benninghoven, R.J. Colton, D.S. Simons, and H.W. Werner (Springer-Verlag, Berlin, 1986); and “Fundamentals of Secondary Ion Mass Spectrometry,” by W. Katz and J.G. Newman in this issue of the MRS BULLETIN.

    Google Scholar 

  3. I.D. Kovalev, G.A. Maksimov, A.I. Suchkob, and N.V. Larin, Inf. J. Mass. Spectrom. Ion Phys. 227 (1978) p. 101; R.J. Conzemius and J.M. Capellen, ibid. 34 (1980) p. 197.

    Google Scholar 

  4. R.E. Honig, J. Appl. Phys. 29 (1958) p. 549.

    CAS  Google Scholar 

  5. J.R. Woodyard and C.B. Cooper, J. Appl. Phys. 35 (1964) p. 1107.

    CAS  Google Scholar 

  6. H. Oechsner and W. Gerhard, Surf. Sci. 44 (1974) p. 480.

    CAS  Google Scholar 

  7. N. Winograd, J.P. Baxter, and F.M. Kimock, Chem. Phys. Lett. 88 (1982) p. 581; F.M. Kimock, J.P. Baxter, D.L. Pappas, P.H. Kobrin, and N. Winograd, Anal. Chem. 56 (1984) p. 2782.

    CAS  Google Scholar 

  8. J.E. Parks, H.W. Schmitt, G.S. Hurst, and W.M. Fairbank, Jr., Thin Solid Films 108 (1983) p. 69; M.J. Pellin, C.E. Young, W.F. Calaway, and D.M. Gruen, Surf. Sci. 144 (1984) p. 619; D.L. Donohue, W.H. Christie, D.E. Goeringer, and H.S. McKown, Anal. Chem. 57 (1985) p. 1193.

    CAS  Google Scholar 

  9. H. Gnaser, J. Fleischhauer, and W.O. Hofer, Appl. Phys. A 37 (1985) p. 211; O. Ganschow, in Reference 2, p. 79.

    Google Scholar 

  10. M.G. Sherman, J.R. Kingsley, D. Land, R.T. Mclver Jr., and J.C. Hemminger, J. Vac. Sci. Technol. A 4 (1986) p. 1507.

    Google Scholar 

  11. C.H. Becker and K.T. Gillen, Anal. Chem. 56 (1984) p. 1671.

    CAS  Google Scholar 

  12. C.H. Becker and K.T. Gillen, J. Vac. Sci. Technol. A 3 (1985) p. 1347.

    Article  CAS  Google Scholar 

  13. P. Lambropoulos, Adv. At. Mol. Phys. 12 (1976) p. 87; J. Morellec, D. Normand, and G. Petite, ibid. 18 (1982) p. 97.

    Article  CAS  Google Scholar 

  14. B. Schueler and R.W. Odom, J. Appl. Phys. 61 (1987) p. 4652.

    Article  CAS  Google Scholar 

  15. B.A. Mamyrin, V.I. Karataev, D.V. Shmikk, and V.A. Zagulin, Sov. Phys. JETP 37 (1973) p. 45.

    Google Scholar 

  16. E. Taglauer and W. Heiland, Appl. Phys. 9 (1976) p. 261; T.M. Buck, G.H. Wheatley, and L. Marchut, Phys. Rev. Lett. 51 (1983) p. 43.

    Article  CAS  Google Scholar 

  17. C.H. Becker, J. Vac. Sci. Technol. A 5 (1987) p. 1181.

    Article  CAS  Google Scholar 

  18. J.B. Pallix, C.H. Becker, and K.T. Gillen, Appl. Surf. Sci. (submitted).

  19. C.H. Becker and K.T. Gillen, Appl. Phys. Lett. 45 (1984) p. 1063.

    Article  CAS  Google Scholar 

  20. C.H. Becker, in Materials Characterization, edited by N.W. Cheung and M.-A. Nicolet (Mater. Res. Soc. Symp. Proc. 69, Pittsburgh, PA, 1986) p. 59.

  21. C.M. Stahle, D.J. Thomson, C.R. Helms, C.H. Becker, and A. Simmons, Appl. Phys. Lett. 47 (1985) p. 521.

    CAS  Google Scholar 

  22. P. Williams, in Applied Atomic Collision Physics edited by S. Datz (Academic Press, Orlando, FL, 1983) Vol. 4, p. 327.

    Google Scholar 

  23. J. Van Laar and A. Huijser, J. Vac. Sci. Technol. 13 (1976) p. 769; W.E. Spicer, I. Lindau, P.E. Gregory, C.M. Garner, P. Pianetta, and P.W. Chye, ibid. 13 (1976) p. 780.

    Google Scholar 

  24. W.E. Spicer, P.W. Chye, P.R. Skeath, C.Y. Su, and I. Lindau, J. Vac. Sci. Technol. 16 (1979) p. 1427; W.E. Spicer, I. Lindau, P.R. Skeath, C.Y. Su, and P.W. Chye, Phys. Rev. Lett. 44 (1980) p. 420.

    Google Scholar 

  25. N. Newman, W.G. Petro, T. Kendelewicz, S.H. Pan, S.J. Eglash, and W.E. Spicer, J. Appl. Phys. 57 (1985) p. 1247.

    CAS  Google Scholar 

  26. N. Newman, W.E. Spicer, and E.R. Weber, J. Vac. Sci. Technol. B 5 p. 1020, and literature cited.

  27. N. Newman, K.K. Chin, W.G. Petro, T. Kendelewicz, M.D. Williams, C.E. McCants, and W.E. Spicer, J. Vac. Sci. Technol. A 3 (1985) p. 996, and literature cited.

    CAS  Google Scholar 

  28. Z. Liliental-Weber, R. Gronsky, J. Washburn, N. Newman, W.E. Spicer, and E.R. Weber, J. Vac. Sci. Technol. B 4 (1986) p. 912.

    CAS  Google Scholar 

  29. Z. Liliental-Weber, E.R. Weber, N. Newman, W.E. Spicer, R. Gronsky, and J. Washburn in Defects in Semiconductors, edited by H.J. von Barbeleben (Materials Science Press, Switzerland, 1986) Vol. 10–12, p. 1223; D. Coulman, N. Newman, G.A. Reid, Z. Liliental-Weber, E.R. Weber, and W.E. Spicer, J. Vac. Sci. Technol. B 5 (in press).

    Google Scholar 

  30. E.R. Weber, H. Ennen, U. Kaufmann, J. Windscheif, J. Schneider, and T. Wosinski, J. Appl. Phys. 53 (1982) p. 6140; E.R. Weber and J. Schneider, Physica B 116 (1983) p. 398.

    CAS  Google Scholar 

  31. I.V. Bletsos, D.M. Hercules, A. Benninghoven, and D. Greifendorf, in Ref. 2, p. 538; I.J. Amster, J. A. Loo, J.J.P. Furlong, and F.W. McLafferty, Anal. Chem. 59 (1987) p. 313; C.L. Wilkins, D.A. Weil, C.L.C. Yang, and C.F. Ijames, ibid. 57 (1985) p. 520; R.J. Cotter, J.P. Honovich, J.K. Olthoff, and R.P. Lattimer, Macromol. 19 (1986) p. 2996.

    Google Scholar 

  32. Polymer Handbook, 2nd ed., edited by J. Brandrup and E.H. Immergut (Wiley Inter-science, New York, 1975) Section II, p. 473.

    Google Scholar 

  33. A.H. Kung, J.F. Young, and S.E. Harris, Appl. Phys. Lett. 22 (1973) p. 301; (errata) 28 (1976) p. 239; L.J. Zych and J.F. Young, IEEE J. Quantum Electron. QE-14 (1978) p. 147; A.H. Kung, Opt. Lett. 8 (1983) p. 24.

    CAS  Google Scholar 

  34. See Reference 2, especially Part VIII.

    Google Scholar 

  35. A.E. Morgan, Nucl. Instrum. Meth. Phys. Res. 218 (1983) p. 401.

    Article  CAS  Google Scholar 

  36. C.H. Becker, Scanning Electron Microsc. IV (1986), p. 1267.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallix, J.B., Becker, C.H. & Newman, N. Surface Analysis by Laser Ionization. MRS Bulletin 12, 52–58 (1987). https://doi.org/10.1557/S0883769400067233

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400067233

Navigation