Skip to main content
Log in

Chemical Synthesis of Fine Powders

  • Fine Particles Part II
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Conclusion

This article emphasizes the role of chemistry in the control of the formation of precursors to nucleation. Complexation appears to be one clue for the synthesis of fine powders. It provides a chemical reservoir for metal ions and allows some control of hydrolysis and condensation reactions. For inorganic precursors we have shown that sulfate anions appear to have a very versatile behavior as they may form either soluble monomeric (Ti) or oligomeric (Zr) complexes with tetravalent elements, polymeric complexes with trivalent elements (Cr), and insoluble basic salts with divalent elements. In all cases the unique role of sulfates may be attributed to their intermediate electronegativities, which are not too high to allow ionocovalent bonding, but also not too low to resist chemical attack by water. Because organic precursors are much less electronegative than inorganic ones, complexation may be achieved by nucleophilic and protic neutial molecules such as organic acids and acetylacetone. These additives change the molecular structure of the precursors, reduce their functionality, and thus orient nucleation and growth processes toward reticulated chains or polymers. Fine particle synthesis could then be optimized by making chemistry even if it is not yet possible to link chemistry and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J.J. Zelinski and D.R. Uhlmann, J. Phys. Chem. Solids 45 (1984) p. 1069.

    Article  CAS  Google Scholar 

  2. J.L. Woodhead, J. Physique C1–47 (1986) p. 1.

    Google Scholar 

  3. J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18 (1988) p. 259.

    Article  CAS  Google Scholar 

  4. A.E. Nielsen, in “Kinetics of Precipitation,” (Pergamon Press, Oxford, 1964).

    Google Scholar 

  5. J.Th.G. Overbeek, Adv. Colloid Interface Sci. 15 (1982) p. 251.

    Article  CAS  Google Scholar 

  6. V.K. LaMer and R.H. Digenar, J. Am. Chem. Soc. 72 (1950) p. 4847.

    Article  CAS  Google Scholar 

  7. A.E. Nielsen, in Crystal Growth, edited by H.S. Peiser (Pergamon Press, Oxford, 1967) p. 419.

    Google Scholar 

  8. A. Bell and E. Matijević, J. Phys. Chem. 78 (1974) p. 2621.

    Article  CAS  Google Scholar 

  9. E. Matijević, Ann. Rev. Mater. Sci. 15 (1985) p. 483.

    Article  Google Scholar 

  10. D.L. Segal, J. Chem. Tech. Biotechnol. 34A (1984) p. 25.

    CAS  Google Scholar 

  11. A. Ayral, J. Phalippou, and J.C. Droguet, in Better Ceramics Through Chemistry III, edited by C. Jeffrey Brinker, David E. Clark, and Donald R. Ulrich (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988) p. 239.

    Google Scholar 

  12. M. Haruta and B. Delmon, J. Chem. Phys. 83 (1986) p. 859.

    CAS  Google Scholar 

  13. J. Livage and M. Henry, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988) p. 183.

    Google Scholar 

  14. M. Henry, J.P. Jolivet, and J. Livage, 4th Int. Conf. “Ultrastructure Processing of Ceramics, Glasses, and Composites,” (Tuckson, 1989) in press.

  15. E.J. Little and M.M. Jones, J. Chem. Educ. 37 (1960) p. 231.

    Article  CAS  Google Scholar 

  16. M. Ardon and A. Bino, Structure and Bonding 65 (1987) p. 1.

    Article  CAS  Google Scholar 

  17. J. Beukenkamp and K.D. Herrington, J. Am. Chem. Soc. 82 (1960) p. 3025.

    Article  CAS  Google Scholar 

  18. T.F. Limar and A.l. Artyushenko, Russ. J. Inorg. Chem. 14 (1969) p. 1628.

    Google Scholar 

  19. L.I. Bekkerman, I.P. Dobrovol’skii and A.A. Ivakin, Russ. J. Inorg. Chem. 21 (1976) p. 223.

    Google Scholar 

  20. E. Narita, H. Takenchi, N. Horiguchi, and T. Okabe, Bull. Chem. Soc. Jpn. 57 (1984) p. 1388.

    Article  CAS  Google Scholar 

  21. E. Matijević, M. Budnik, and L. Meites, J. Colloid Interface Sci. 61 (1977) p. 302.

    Article  Google Scholar 

  22. J.F. Duncan and R.G. Richards, New Zealand J. Sci. 19 (1976) p. 179.

    CAS  Google Scholar 

  23. J.F. Duncan and R.G. Richards, New Zealand J. Sci. 19 (1976), p. 185.

    CAS  Google Scholar 

  24. M.A. Blesa, A.J.G. Maroto, S.I. Passagio, N.E. Figliolia, and G. Rigotti, J. Mater. Sci. 20 (1985) p. 4601.

    Article  CAS  Google Scholar 

  25. H. De Hek, R.J. Stol, and P.L. De Bruyn, J. Colloid Interface Sci. 64 (1978) p. 72.

    Article  Google Scholar 

  26. E. Matijević, R.S. Sapieszko, and J.B. Melville, J. Colloid Interface Sci. 50 (1975) p. 567.

    Article  Google Scholar 

  27. R.I. Larson, E.F. Fulman, A.D. Lindsay, and E. Matijević, AlChE J. 19 (1973) p. 602.

    Article  CAS  Google Scholar 

  28. E.A. Barringer and H.K. Bowen, Langmuir 1 (1985) p. 414.

    Article  CAS  Google Scholar 

  29. E.A. Barringer and H.K. Bowen, J. Amer. Ceram. Soc. 65 (1982) p. C199.

    Article  CAS  Google Scholar 

  30. F. Babonneau, S. Doeuff, A. Leaustic, C. Sanchez, C. Cartier, and M. Verdaguer, Inorg. Chem. 27 (1988) p. 3166.

    Article  CAS  Google Scholar 

  31. R.W. Hartel and K.A. Berglund, in Better Ceramics Through Chemistry II, edited by C. Jeffrey Brinker, David E. Clark, and Donald R. Ulrich (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986) p. 633.

    Google Scholar 

  32. M.T. Harris and C.H. Byers, J. Non-Cryst. Solids 103 (1988) p. 49.

    Article  CAS  Google Scholar 

  33. D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, in Metal Alkoxides (Academic Press, London, 1978).

    Google Scholar 

  34. T. Ogihara, T. Ikemoto, N. Mizutami, M. Kato, and Y. Mitarai, J. Mater. Sci. 21 (1986) p. 2771.

    Article  CAS  Google Scholar 

  35. T. Ogihara, N. Mizutami, and M. Kato, J. Amer. Ceram. Soc. 72 (1989) p. 421.

    Article  CAS  Google Scholar 

  36. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89 (1987) p. 206.

    Article  CAS  Google Scholar 

  37. C. Sanchez, F. Babonneau, S. Doeuff, and A. Leaustic, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988) p. 77.

    Google Scholar 

  38. A. Leaustic, F. Babonneau, and J. Livage, Chemistry of Materials 1 (1989) p. 240.

    Article  CAS  Google Scholar 

  39. G. Rinn and H. Schmidt, in Ceramic Transactions 1A, edited by G.L. Messing and E.R. Fuller (Amer. Ceram. Soc, Westerville, 1988) p. 23.

    Google Scholar 

  40. C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Solids 100 (1988) p. 65.

    Article  CAS  Google Scholar 

  41. R.J. Stol and P.L. De Bruyn, J. Colloid Interface Sci. 75 (1980) p. 185.

    Article  CAS  Google Scholar 

  42. R. Botet and R. Jullien, J. Phys. A: Math Gen. 17 (1984) p. 2517.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livage, J., Henry, M., Jolivet, J.P. et al. Chemical Synthesis of Fine Powders. MRS Bulletin 15, 18–25 (1990). https://doi.org/10.1557/S0883769400060693

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400060693

Navigation