Skip to main content
Log in

Metastable Phase Formation in Thin Films and Multilayers

  • Multilayer Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R.B. Schwarz and W.L. Johnson, “Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals,” Phys. Rev. Lett. 51(5) (1983) p. 415.

    Article  CAS  Google Scholar 

  2. Solid State Amorphizing Transformations: Proceedings of the Conference on Solid State Amorphizing Transformations, Los Alamos, NM, August 10–13, 1987, edited by R.B. Schwarz and W.L. Johnson (Elsevier Sequoia S.A., Lausanne, 1988).

    Google Scholar 

  3. B.M. Clemens, “Solid-State Reaction and Structure in Compositionally Modulated Zirconium-Nickel and Titanium-Nickel Films,” Phys. Rev. B 33(11) (1986) p. 7615.

    Article  CAS  Google Scholar 

  4. B.M. Clemens, W.L. Johnson, and R.B. Schwarz, “Amorphous Nickel Zirconium Formed by Solid State Reaction,” J. Non. Cryst. Solids 61 & 62 (1984) p. 817.

    Article  Google Scholar 

  5. H. Schröder, K. Samwer, and U. Köster, “Micromechanism for Metallic-Glass Formation by Solid State Reaction,” Phys. Rev. Lett. 54(3) (1985) p. 197.

    Article  Google Scholar 

  6. E.J. Cotts, W.L. Meng, and W.L. Johnson, “Calorimetric Study of Amorphization in Planar, Binary, Multilayer Thin-Film Diffusion Couples of Ni and Zr,” Phys. Rev. Lett. 57 (1986) p. 2295.

    Article  CAS  Google Scholar 

  7. Y.-T. Cheng, W.L. Johnson, and M-A. Nicolet, “Dominant Moving Species in the Formation of Amorphous Ni/Zi by Solid State Reaction,” Appl. Phys. Lett. 47(8) (1985) p. 800.

    Article  CAS  Google Scholar 

  8. W.L. Johnson, “Crystal-to-Glass Transformation in Metallic Materials,” Mater. Sci. Eng. 97 (1988) p. 1–13.

    Article  CAS  Google Scholar 

  9. B.M. Clemens and J.C. Buchholz, “Amorphous Phase Formation in Solid State Reactions of Layered Nickel Zirconium Films,” in Layered Structures, Epitaxy, Interfaces, edited by J.M. Gibson and L.R. Dawson, (Mater. Res. Soc. Symp. Proc. 37, Pittsburgh, PA, 1985) p. 559–564.

    Google Scholar 

  10. A.M. Vrendenberg, J.F.M. Westendorp, F.W. Saris, N.M. van der Pers, and Th.H. de Keijser, “Evidence for a Nucleation Barrier in the Amorphous Phase Formation by Solid-State Reaction of Ni and Single-Crystal Zr,” J. Mater. Res. 1 (1986) p. 774–780.

    Article  Google Scholar 

  11. W.J. Meng, C.W. Nieh, E. Ma, B. Fultz, and W.L. Johnson, “Solid State Interdiffusion Reactions of Ni/Zr Diffusion Couples,” Mater. Sci. and Eng. 97 (1988) p. 87.

    Article  CAS  Google Scholar 

  12. R.W. Johnson, C.C. Ahn, and E.R. Ratner, “Grain Boundary Amorphization Reaction in Thin Films of Elemental Cu and Y,” J. of Appl. Phys. submitted, 1989.

  13. H. Bakker, “Fast Metal Impurity Diffusion in Metals and the Miedema Model,” J. Less. Comm. Met. 105, p. 129 (1983).

    Article  Google Scholar 

  14. C.M. Falco, “Structural and Electronic Properties of Artificial Metallic Superlattices,” Journal de Physique C5 (1984) p. 499–507.

    Google Scholar 

  15. B.M. Clemens, “Structure of Early Transition Metal-Late Transition Metal Multilayers,” J. Less. Comm. Met. 140 (1988) p. 57–66.

    Article  CAS  Google Scholar 

  16. G.J. Van der Kolk, A.R. Miedema, and A.K. Niessen, “On the Composition Range of Amorphous Binary Transition Metal Alloys,” J. Less Comm. Met. 145 (1988) p. 1–17.

    Article  Google Scholar 

  17. B.C. Giessen, “Glass Formation Diagrams: A Two Parameter Representation of Readily Glass Forming Binary Alloy Systems,” Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai (1982) p. 213.

  18. A.R. Miedema, “The Heat of Formation of Alloys,” Philips Tech. Rev. 36 (1976) p. 217.

    CAS  Google Scholar 

  19. D. Turnbull, “Formation of Crystal Nuclei in Liquid Metals,” J. of Appl. Phys. 21 (1950) p. 1022–1027.

    Article  CAS  Google Scholar 

  20. B.M. Clemens and D.L. Williamson, “Interface Structure and Solid-State Reactions of Fe/Zr Multilayers,” Mat. Res. Soc. Symp. Proc. 103 (1988) p. 159–166.

    Article  CAS  Google Scholar 

  21. B.M. Clemens, J.P. Stec, S.M. Heald, and J.M. Tranquada, “Structure of Copper-hafnium Multilayers,” in Interfaces, Superlattices, and Thin Films, edited by J.D. Dow and I.K. Schuller (Mater. Res. Soc. Symp. Proc. 77, Pittsburgh, PA, 1987) p. 489–494.

    Google Scholar 

  22. B.M. Clemens, G.L. Eesley, and C.A. Paddock, “Time-Resolved Thermal Transport in Compositionally Modulated Metal Films,” Phys. Rev. B 37 (1988) p. 1085–1096.

    Article  CAS  Google Scholar 

  23. R.E. Somekh, R.J. Highmore, K. Page, R.J. Home, and Z.H. Barber, “The Sputter Deposition of Metal Multilayers,” in Multilayers: Synthesis, Properties, and Nonelectronic Applications, edited by T.W. Barbee Jr., F. Spaepen, and L. Greer (Mater. Res. Soc. Symp. Proc. 103, Pittsburgh, PA, 1988) p. 29–34.

    Google Scholar 

  24. R.J. Highmore, R.E. Somekh, J.E. Evetts, and A.L. Greer, “Differential Scanning Calorimetry Studies of Solid State Amorphization in Multilayer Ni/Zr,” J. Less Comm. Met. 140 (1988) p. 353–360.

    Article  CAS  Google Scholar 

  25. C-H. Chang, Structural Properties of NiTi, CoSi, and MoSi Multilayered Thin Films PhD thesis, Arizona State University, 1989.

  26. M.R. Khan, C.S.L. Chun, G.P. Felcher, M. Grimsditch, A. Kueny, C.M. Falco, and I.K. Schuller, “Structural, Elastic, and Transport Anomalies in Molybdenum/Nickel Superlattices,” Phys. Rev. B 27 (1983) P. 7186.

    Article  CAS  Google Scholar 

  27. I.K. Schuller and A. Rahman, “Elastic-Constant Anomalies in Metallic Superlattices: A Molecular-Dynamics Study,” Phys. Rev. Left. 50(18) (1983) p. 1377.

    Article  CAS  Google Scholar 

  28. W.R. Bennett, J.A. Leavitt, and C.M. Falco, “Growth Dynamics at a Metal-Metal Interface,” Phys. Rev. B, 35(9) (1987) p. 4199.

    Article  CAS  Google Scholar 

  29. B.M. Clemens and G.L. Eesley, “Relationship between Interfacial Strain and the Elastic Response of Multilayer Films,” Phys. Rev. Lett. 61 (1988) p. 2356–2359.

    Article  CAS  Google Scholar 

  30. M.L. Huberman and M. Grimsditch, “Lattice Expansions and Contractions in Metallic Superlattices,” Phys. Rev. Lett. 62 (1989) p. 1403–1406.

    Article  CAS  Google Scholar 

  31. R.C. Cammarata and K. Sieradzki, “Effects of Surface Stress on the Elastic Moduli of Thin Films and Superlattices,” Phys. Rev. Lett. 62 (1989) p. 2005.

    Article  CAS  Google Scholar 

  32. J.H. van der Merwe, “Crystal Interfaces. Part II. Finite Overgrowths,” J. Appl. Phys. 34 (1962) p. 123–127.

    Article  Google Scholar 

  33. K.N. Tu and J.W. Mayer, “Silicide Formation,” in Thin Films-Interdiffusion and Reactions: Vol. 10, edited by J.M. Poate, K.N. Tu, and J.W. Mayer (John Wiley & Sons Inc., New York, 1978) p. 359–405.

    Google Scholar 

  34. R.M. Walser and R.W. Bene, “First Phase Nucleation in Silicon-Tungsten Metal Planar Interfaces,” Appl. Phys. Lett. 28 (1976) p. 624–627.

    Article  CAS  Google Scholar 

  35. P.J. Grunthaner, F.J. Grunthaner, and J.W. Mayer, “XPS Study of the Structure of the Nickel-Silicon Interface,” J. Vac. Sci. Tech. 17 (1980) p. 924–929.

    Article  CAS  Google Scholar 

  36. F.M. d’Heurle and P. Gas, “Kinetics of Formation of Silicide: A Review,” J. Mater. Res. 1 (1986) p. 205–221.

    Article  Google Scholar 

  37. E. Ma, W.J. Meng, W.L. Johnson, and M.A. Nicolet, “Simultaneous Planar Growth of Amorphous and Crystalline in Silicides,” Appl. Phys. Lett. 53 (1988) p. 2033–5203.

    Article  CAS  Google Scholar 

  38. M.A. Nicolet and S.S. Lau, in VLSI Electronics, Microstructure Science, edited by N.G. Einsbruch and E.B. Larrabee, 6 (1983) p. 300.

  39. R.W. Bene, “A Kinetic-Model for Solid-State Silicide Nucleation,” J. of Appl. Phys. 61 (1987) p. 1826–1833.

    Article  CAS  Google Scholar 

  40. R. Beyers and R. Sinclair, “Metastable Phase Formation in Titanium-Silicon Thin-Films,” J. of Appl. Phys. 57 (1985) p. 5240–5245.

    Article  CAS  Google Scholar 

  41. K.N. Tu, “Interdiffusion in Thin Films,” Ann. R. Mater. 15 (1985) p. 147–176.

    Article  CAS  Google Scholar 

  42. S. Herd, K.N. Tu, and K.Y. Ahn, “Formation of Amorphous Rh-Si Alloy by Interfacial Reaction between Amorphous Si and Crystalline Rh Thin Films,” Appl. Phys. Lett. 42 (1983) p. 597.

    Article  CAS  Google Scholar 

  43. K. Holloway and R. Sinclair, “Amorphous Ti-Si Alloy Formed by Interdiffusion of Amorphous Si and Crystalline Ti Multilayers,” J. of Appl. Phys. 61 (1987) p. 1359–1364.

    Article  CAS  Google Scholar 

  44. K. Holloway and R. Sinclair, “High Resolution and In Situ TEM Studies of Annealing of Ti-Si Multilayers,” J. Less-Common Metals 140 (1988) p. 139–148.

    Article  CAS  Google Scholar 

  45. D.M. Vanderwalker, “Amorphous Transition Phase of NiSi2,” Appl. Phys. Lett. 48 (1986) p. 707–709.

    Article  CAS  Google Scholar 

  46. M. Nathan, “Solid-Phase Reaction in Free Standing Layered Ti-Si, V-Si, Cr-Si, Co-Si Films,” J. of Appl. Phys. 63 (1988) p. 5534–5540.

    Article  CAS  Google Scholar 

  47. K. Holloway, K.B. Do, and R. Sinclair, “Interfacial Reactions on Annealing Molybdenum-Silicon Multilayers,” J. of Appl. Phys. 65 (1989) p. 474–480.

    Article  CAS  Google Scholar 

  48. I.J.M.M. Raaijmakers, A.H. Reader, and P.H. Oosting, “The Formation of an Amorphous Silicide By Thermal Reaction of Sputter Deposited Ti and Si Layers,” J. of Appl. Phys. 63 (1988) p. 2790–2795.

    Article  CAS  Google Scholar 

  49. A.E. Morgan, E.K. Broadbent, K.N. Ritz, D.K. Sadana, and B.J. Burrow, “Interactions of Thin Ti Films with Si, SiO2, and SixOy Under Rapid Thermal Annealing,” J. of Appl. Phys. 64 (1988) p. 344–353.

    Article  CAS  Google Scholar 

  50. S. Ogawa, T. Yoshida, T. Kouzaki, R. Sinclair, and K. Tsuji, Workshop on Tungsten and Other CVD Metals for ULSI/VLSI Applications IV, in press, 1989.

  51. W. Lur and L.J. Chen, “Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti,” Appl. Phys. Lett. 54 (1989) p. 1217–1219.

    Article  CAS  Google Scholar 

  52. D. Brasen, R.H. Willens, S. Nakahara, and T. Boone, “Structural Characterization of Ti-Si Thin Film Superlattices,” J. of Appl. Phys. 60 (1986) p. 3527–3531.

    Article  CAS  Google Scholar 

  53. W.L. Johnson, “Thermodynamic and Kinetic Aspects of the Crystal to Glass Transformation in Metalloid Materials,” Prog. Mater. Sci. 30 (1986) p. 81–134.

    Article  CAS  Google Scholar 

  54. K. Holloway, Interfacial Reactions in Metal-Silicon Multilayers, PhD thesis, Stanford University, 1989.

  55. R. Sinclair, K. Holloway, K.B. Kim, D.H. Ko, A.S. Bhansali, A.F. Schwartzman, and S. Ogawa, Inst. Phys. Conf. Ser., 100 (1989) p. 599–607.

    CAS  Google Scholar 

  56. V.N. Svechnikov, Y.A. Kocherzhinsky, L.M. Yupko, O.G. Kulik, and E.A. Shishkin, “Phase Diagram of Titanium-Silicon System,” Dokl. Akad. Nank. SSSR, 193 (1970) p. 393.

    CAS  Google Scholar 

  57. D.A. Robins and D.I. Jenkins, “The Heats of Formation of Some Transition Metal Silicides,” Acta Met. 3 (1955) p. 598–604.

    Article  CAS  Google Scholar 

  58. Y.O. Esin, M.G. Valishev, A.F. Ermakov, P.V. Gel’d and M.S. Petrushevskij, “Enthalpy of Formation of Liquid Binary-Alloys of Vanadium and Titanium with Silicon,” Russ. Metall. 2 (1981) p. 71–72.

    Google Scholar 

  59. K. Holloway and R. Bormann, to be published.

  60. W.K. Chu, S.S. Lau, J.W. Mayer, J. Muller and K.N. Tu, “Implanted Noble Gas Atoms as Diffusion Markers in Silicide Formation,” Thin Solid Films 25 (1975) p. 393–402.

    Article  CAS  Google Scholar 

  61. K. Holloway, R. Sinclair, and M. Nathan, “Amorphous Silicide Formation by Thermal Reaction: A Comparison of Several Metal-Silicon Systems,” J. Vac. Sci. Technol. A7 (1989) p. 1479–1483.

    Article  Google Scholar 

  62. G.J. Van Gurp, D. Sigurd, and W.F. Vanderwe, “Tungsten as a Marker in Thin-Film Diffusion Studies,” Appl. Phys. Lett. 29 (1976) p. 159–161.

    Article  Google Scholar 

  63. W.K. Chu, H. Krautie, J.W. Mayer, H. Muller, and M.A. Nicolet, “Identification of Dominant Diffusing Species in Silicide Formation,” Appl. Phys. Lett. 25 (1974) p. 454–457.

    Article  CAS  Google Scholar 

  64. F.M. d’Heurle, S. Peterson, L. Stolt, and B. Stritzker, “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin-Film,” J. Appl. Phys. 53 (1982) p. 5678–5681.

    Article  Google Scholar 

  65. C.D. Lien, M.A. Nicolet, and S.S. Lau, Kinetics of CoSi2 from Evaporated Silicon,” Appl. Phys. A34 (1984) p. 249–251.

    Article  CAS  Google Scholar 

  66. N. Saunders and A.P. Miodownik, “Thermodynamic Aspects of Amorphous Phase Formation,” J. Mater. Res. 1 (1986) p. 38–46.

    Article  CAS  Google Scholar 

  67. R. Bormann, F. Gärtner, and K. Zöltzer, “Application of the CALPHAD Method for the Prediction of Amorphous Phase Formation,” J. Less-Comm. Met. 145 (1988) p. 19–29.

    Article  CAS  Google Scholar 

  68. A.R. Miedema and A.K. Niessen, “Volume Effects Upon Alloying of Two Transition Metals,” Physica 114B (1982) p. 367–374.

    Google Scholar 

  69. R.B. Schwarz, K.L. Wong, W.L. Johnson, and B.M. Clemens, “A Study of Amorphous Alloys of Au with Group iii A Elements (Y and La) Formed by a Solid-State Reaction,” J. Non-Cryst. Solids 61 & 62 (1984) p. 415–418.

    Google Scholar 

  70. B.M. Clemens and J.J. Neumeier, “Ion-Beam Mixed Iron Boron Films,” J. of Appl. Phys. 58 (1985) p. 4061–4064.

    Article  CAS  Google Scholar 

  71. C. Brouder, G. Krill, P. Guilmin, G. Marchai, E. Dartyge, A. Fontaine, and G. Tourillon, “Solid-State Reaction in Ce/Ni Multilayers Studied by X-ray Absorption Spectroscopy,” Phys. Rev. B 37 (1988) p. 2433–2439.

    Article  CAS  Google Scholar 

  72. P. Guilmin, P. Guyot, and G. Marchai, “Amorphization of Crystalline Co and Sn Multilayers By Solid State Reaction,” Physics Letters 109A (1985) p. 174–178.

    Article  CAS  Google Scholar 

  73. M. Atzmon, K.M. Unruh, and W.L. Johnson, “Formation and Characterization of Amorphous Erbium-Based Alloys Prepared by Near-Isothermal Cold Rolling of Elemental Composites,” J. of Appl. Phys. 58 (1985) p. 3865–3870.

    Article  CAS  Google Scholar 

  74. M. Atzmon, J.D. Verhoeven, E.D. Gibson, and W.L. Johnson, “Formation and Growth of Amorphous Phases by Solid-State Reaction in Elemental Composites Prepared by Cold Working,” Appl. Phys. Lett. 45 (1984) p. 1052–1053.

    Article  CAS  Google Scholar 

  75. B.M. Clemens and M.J. Suchoski, “Amorphous Iron Zirconium Formed by Solid State Reaction,” Appl. Phys. Lett. 47 (1985) p. 943.

    Article  CAS  Google Scholar 

  76. M. Van Rossum, M-A. Nicolet, and W.L. Johnson, “Amorphization of Hf-Ni Films by Solid-State Reaction,” Phys. Rev. B 29 (1984) p. 5498.

    Article  Google Scholar 

  77. Z.S. Shan, S. Nafis, K.D. Aylesworth, and J.D. Sellmyer, “Magnetic Properties, Anisotropy, and Microstructure of Sputtered Rare-Earth Iron Multilayers,” J. of Appl. Phys. 63 (1988) p. 3218–3220.

    Article  CAS  Google Scholar 

  78. L. Maritari, C.M. Falco, J. Aboaf, and D.I. Paul, “Ferromagnetic Multilayers of Permalloy and TiN,” J. of Appl. Phys. 61 (1987) p. 1588–1591.

    Article  Google Scholar 

  79. M. Senda and Y. Nagai, “Magnetic Properties of Multilayer Films Consisting of Fe and Nonmagnetic Layers,” J. of Appl. Phys. 65 (1989) p. 3157–3160.

    Article  CAS  Google Scholar 

  80. C.M. Falco, “Metal-Metal Superlattices” in Conf. Proc. Dynamical Phenomena at Surfaces, Interfaces and Superlattices, Erice, Sicily, Italy, July 1–14, 1984, edited by F. Nizzoli, K.H. Rieder, and R.F. Willis (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  81. C.F. Majkrzak, D. Gibbs, P. Bōni, A.I. Goldman, J. Kwo, M. Hong, T.C. Hsieh, R.M. Fleming, D.B. McWhan, Y. Yafet, J.W. Cable, J. Bohr, H. Grimm, and C.L. Chien, “Magnetic Rare-Earth Superlattices,” J. of Appl. Phys. 63 (1988) p. 3447–3452.

    Article  CAS  Google Scholar 

  82. A. Maeda, T. Satake, T. Fujimori, H. Tajima, M. Kobayashi, and K. Kuroda, “Structural and Magnetic Studies of Artificial Eu/Mn Superlattice,” J. Appl. Phys. 65 (1989) p. 3845–3848.

    Article  CAS  Google Scholar 

  83. B.M. Clemens and J.G. Gay, “The Effect of Layer Thickness Fluctuations on Superlattice Diffraction,” Phys. Rev. B 35 (1987) p. 9337, Rapid Communication.

    Article  CAS  Google Scholar 

  84. I.J.M.M. Raaijmakers, L. Van Ijgendoorn, A. Theunissen, and K.B. Kim, Mater. Res. Soc. Symp. Proc., in press, 1989.

  85. J.R. Abelson, K.B. Kim, D.E. Mercer, C.R. Helms, R. Sinclair, and T.W. Sigmon, “Disordered Intermixing at the Platinum-Silicon Interface Demonstrated by High-Resolution Cross-Sectional Transmission Electron Microscopy, Auger Electron Spectroscopy and MeV Ion Channeling,” J. Appl. Phys. 63 (1988) p. 689–692.

    Article  CAS  Google Scholar 

  86. U.K. Kohler, J.E. Demuth, and R.J. Hamers, “Surface Reconstruction and the Nucleation of Palladium Silicide on Si(111),” Phys. Rev. Lett. 60 (1988) p. 2499–2502.

    Article  CAS  Google Scholar 

  87. K.N. Tu, S.R. Herd, and U. Goesele, submitted for publication.

  88. T.W. Barbee, Amer. Inst. Phys. Conf. Proc. 75 (1981) p. 131.

    CAS  Google Scholar 

  89. E. Spiller, Amer. Inst. Phys. Conf. Proc. 75 (1981), p. 124.

    CAS  Google Scholar 

  90. J.H. Underwood and D.T. Attwood, The Renaissance of X-Ray Optics, Phys. Today 37(4) (1984) p. 44.

    Article  CAS  Google Scholar 

  91. C.M. Falco, I.K. Schuller, “Electronic and Magnetic Properties of Metallic Superlattices,” in Synthetic Modulated Structures, edited by L.L. Chang and B.C. Giessen (Academic Press, Orlando, FL, 1985) p. 339–364.

    Chapter  Google Scholar 

  92. G.F. Marshall (ed)., “Structural and Electronic Properties of Artificial Metallic Superlattices,” edited by G.F. Marshall, Proc. SPIE (1985, 1987) p. 563, 733.

  93. “Structural and Electronic Properties of Artificial Metallic Superlattices,” edited by G.F. Marshall, Proc. SPIE (1987) p. 733.

  94. P. Ruterana, J.P. Chevalier, and P. Houdy, “The Structure of Ultrathin C/W and Si/W Multilayers for High Performance in Soft X-Ray Optics,” J. Appl. Phys. 65 (1989) p. 3907–3913.

    Article  CAS  Google Scholar 

  95. A.K. Petford-Long, M.B. Stearns, C.H. Chang, S.R. Nutt, D.G. Stearns, N.M. Ceglio, and A.M. Hawryluk, “High-Resolution Electron Microscopy Study of X-Ray Multilayer Structures,” J. Appl. Phys. 61 (1987) p. 1422–1428.

    Article  CAS  Google Scholar 

  96. G.M. Lamble, S.M. Heald, D.E. Sayers, E. Ziegler, and P.J. Viccaro, “Tungsten-Carbon Multilayer Composition and the Effects of Annealing: A Glancing Angle Extended X-Ray Absorption Fine Structure Study,” J. Appl. Phys. 65 (1989) p. 4250–4255.

    Article  CAS  Google Scholar 

  97. G.M. Lepetre, E. Ziegler, I.K. Schuller, and R. Rivoira, “Anomalous Expansion of Tungsten-Carbon Multilayers Used in X-Ray Optics,” J. Appl. Phys. 60 (1986) p. 2301–2303.

    Article  CAS  Google Scholar 

  98. Y. Takagi, S.A. Flessa, K.L. Hart, D.A. Pawlik, A.M. Kadin, J.L. Wood, J.E. Keem, and J.E. Tyler, Proc. SPIE 563 (1985) p. 66.

    Article  CAS  Google Scholar 

  99. N. Nakayama, T. Katamoto, T. Shinjo, T. Talcada, “Mössbauer Study of Fe/C Multilayer Films,” J. Phys. F 18 (1988) p. 443–449.

    Article  CAS  Google Scholar 

  100. Y.Y. Platonov, N.I. Polushkin, N.N. Salashchenko, and A.A. Fraerman, “X-Ray Optical Studies of the Characteristics of Multilayer Studies,” Sov. Phys. Tech. Phys. 32 (1987) p. 1324–1329.

    Google Scholar 

  101. J.P. Hirvonen, M. Nastasi, and J.W. Mayer, “Ion-Beam Mixing of Multilayered Ti/C and Fe/C Structures,” Nucl. Inst. Meth. B13 (1986) p. 479–483.

    Article  CAS  Google Scholar 

  102. B.E. Williams and J.J. Glass, “Characterization of Diamond Films: Diamond Phase Identification, Surface Morphology, and Defect Structures,” J. Mater. Res. 4 (1989) p. 373–384.

    Article  CAS  Google Scholar 

  103. R.E. Somekh, “The Thermalization of Energetic Atoms During the Sputtering Process,” J. Vac. Sci. Technol., A 2 (1984) p. 1285–1291.

    Article  Google Scholar 

  104. D.W. Hoffman, “Stress and Property Control in Sputtered Metal Films without Substrate Bias,” Thin Solid Films 107 (1983) p. 353–358.

    Article  CAS  Google Scholar 

  105. Y. Kozono, M. Komuro, S. Narishige, M. Hanazono, and Y. Sugita, “Structures and Magnetic Properties of Fe/Ag Multilayer Films Prepared by Sputtering and Ultrahigh-Vacuum Depositions,” J. of Appl. Phys. 63 (1988) p. 3470–3472.

    Article  CAS  Google Scholar 

  106. B.M. Clemens, “The Effect of Sputtering Pressure on Structure and Solid State Reaction of Ni/Ti Compositionally Modulated Films,” J. of Appl. Phys. 61 (1987) p. 4525.

    Article  CAS  Google Scholar 

  107. T.W. Barbee Jr., “Synthesis of Multilayer Structures by Physical Vapor Deposition Techniques”, in Synthetic Modulated Structures, edited by L.L. Chang and B.C. Giessen (Academic Press, Orlando, 1988) p. 313–338.

    Google Scholar 

  108. R.W. Vook, “Structure and Growth of Thin Films,” Int. Met. Rev. 27 (1982) p. 209–245.

    Article  CAS  Google Scholar 

  109. B.M. Clemens, unpublished result, 1987.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemens, B.M., Sinclair, R. Metastable Phase Formation in Thin Films and Multilayers. MRS Bulletin 15, 19–28 (1990). https://doi.org/10.1557/S0883769400060425

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400060425

Navigation