Skip to main content
Log in

Pulsed Laser Deposition History and Laser-Target Interactions

  • Pulsed Laser Deposition
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The laser, as a source of “pure” energy in the form of monochromatic and coherent photons, is enjoying ever increasing popularity in diverse and broad applications from drilling micron-sized holes on semiconductor devices to guidance systems used in drilling a mammoth tunnel under the English Channel. In many areas such as metallurgy, medical technology, and the electronics industry, it has become an irreplaceable tool.

Like many other discoveries, the various applications of the laser were not initially defined but were consequences of natural evolution led by theoretical studies. Shortly after the demonstration of the first laser, the most intensely studied theoretical topics dealt with laser beam-solid interactions. Experiments were undertaken to verify different theoretical models for this process. Later, these experiments became the pillars of many applications. Figure 1 illustrates the history of laser development from its initial discovery to practical applications. In this tree of evolution, Pulsed Laser Deposition (PLD) is only a small branch. It remained relatively obscure for a long time. Only in the last few years has his branch started to blossom and bear fruits in thin film deposition.

Conceptually and experimentally, PLD is extremely simple, probably the simplest among all thin film growth techniques. Figure 2 shows a schematic diagram of this technique. It uses pulsed laser radiation to vaporize materials and to deposit thin films in a vacuum chamber. However, the beam-solid interaction that leads to evaporation/ablation is a very complex physical phenomenon. The theoretical description of the mechanism is multidisciplinary and combines equilibrium and nonequilibrium processes. The impact of a laser beam on the surface of a solid material, electromagnetic energy is converted first into electronic excitation and then into thermal, chemical, and even mechanical energy to cause evaporation, ablation, excitation, and plasma formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Cheung and H. Sankur, CRC Critical Reviews in Solid State and Materials Science 15 (1988) p. 63.

    Article  CAS  Google Scholar 

  2. F. Beech and I.W. Boyd in Photochemical Processing of Electronic Materials, edited by I.W. Boyd and R.B. Jackman (Academic Press, New York, 1991) p. 387–429.

    Google Scholar 

  3. H.M. Smith and A.F. Turner, Appl. Opt. 4 (1965) p. 147.

    Article  Google Scholar 

  4. B.E. Knox, Mater. Res. Bull. 3 (1968) p. 329.

    Article  CAS  Google Scholar 

  5. B.E. Knox and V.S. Ban, Mater. Res. Bull. 3 (1968) p. 337.

    Article  CAS  Google Scholar 

  6. V.S. Ban and D.A. Kramer, J. Mater. Sci. 5 (1970) p. 978.

    Article  CAS  Google Scholar 

  7. H. Schwartz and H.A. Tourtellotte, J. Vac. Sci. Technol. 6 (1969) p. 3763.

    Article  Google Scholar 

  8. W.P. Barr, J. Phys. E 2 (1969) p. 2.

    Google Scholar 

  9. J.S. Horwitz, K.S. Grabowski, D.B. Chrisey, and R.E. Leuchtner, Appl. Phys. Lett. 59 (1991) p. 1565.

    Article  CAS  Google Scholar 

  10. J. Desserre and J.E. Eloy, Thin Solid Films 29 (1975) p. 29.

    Article  CAS  Google Scholar 

  11. S.V. Gaponov, A.A. Gudkov, B.M. Luskin, V.I. Luchin, and N.N. Salashchenko, Sov. Tech. Phys. Lett. 5 (1979) p. 195.

    Google Scholar 

  12. S.V. Gaponov, B.M. Luskin, B.A. Nesterov, and N.N. Salashchenko, Sov. Phys. Solid State 19 (1977) p. 1736.

    Google Scholar 

  13. S.V. Gaponov, B.M. Luskin, and N.N. Salashchenko 39 (1981) p. 301.

  14. S.V. Gaponov, E.B. Klyuenkov, B.A. Nesterov, N.N. Salashchenko, and M.I. Kheifets, Sov. Tech. Phys. Lett. 5 (1979) p. 193.

    Google Scholar 

  15. H. Osterreicher, H. Bittner, and B. Kothari, J. Solid State Chem. 26 (1978) p. 97.

    Article  Google Scholar 

  16. S.P. Tang, B.G. Wicke, and J. Friichtenicht, J. Chem. Phys. 68 (1978) p. 5471.

    Article  CAS  Google Scholar 

  17. P.S.P. Wei, R.B. Hall, and W.E. Maher, J. Chem. Phys. 59 (1973) p. 3692.

    Article  CAS  Google Scholar 

  18. J.T. Cheung, G. Niizawa, J. Moyle, N.P. Ong, B.M. Paine, and T. Vreeland Jr., J. Vac. Sci. Technol. A4 (1986) p. 2086.

    Article  Google Scholar 

  19. N.P. Ong, J.K. Moyle, J. Bajaj, and J.T. Cheung, J. Vac. Sci. Technol. A5 (1987) p. 3079.

    Article  Google Scholar 

  20. J.T. Cheung and J. Madden, J. Vac. Sci. Technol. B5 (1987) p. 705.

    Article  Google Scholar 

  21. J.T. Cheung, E-H. Cirlin, and N. Otsuka, Appl. Phys. Lett. 53 (1988) p. 310.

    Article  CAS  Google Scholar 

  22. D. Lubben, S.A. Barnett, K. Suzuki, S. Gorbatikin, and J.E. Greene, J. Vac. Sci. Technol. B3 (1985) p. 968.

    Article  Google Scholar 

  23. H. Sankur, W.J. Bunning, J. DeNatale, and J. F. Flintoff, Appl. Phys. Lett. 65 (1989) p. 2475.

    CAS  Google Scholar 

  24. H. Sankur, Appl. Opt. 25 (1986) p. 1962.

    Article  CAS  Google Scholar 

  25. R.F. Curl and R.E. Smalley, Scientific American (October, 1991) p. 54.

  26. C.L. Chan and J. Mazumder, J. Appl. Phys. 62 (1987) p. 4579.

    Article  CAS  Google Scholar 

  27. J.F. Ready, J. Appl. Phys. 36 (1965) p. 462.

    Article  Google Scholar 

  28. M. Von Allmen, J. Appl. Phys. 47 (1976) p. 5460.

    Article  Google Scholar 

  29. J.G. Andrews and D.R. Atthey, J. Inst. Math. Appl. 15 (1975) p. 59.

    Article  Google Scholar 

  30. Y.V. Afana’ev and O.N. Krokhin, Sov. Phys. JETP 25 (1967) p. 639.

    Google Scholar 

  31. S.I. Anisimov, Sov. Phys. JETP 27 (1968) p. 182.

    Google Scholar 

  32. A.M. Hassanein, G.L. Kulcinski, and W.G. Wolfer, Nucl. Eng. Design/Fusion 1 (1984) p. 307.

    Article  Google Scholar 

  33. R.A. Olstad and E.R. Olander, J. Appl. Phys. 46 (1975) p. 1499.

    Article  Google Scholar 

  34. For recent reviews on PLD of YBCO see Reference 2 or Laser Ablation for Material Synthesis, edited by D.C. Paine and J.C. Bravman (Mater. Res. Symp. Proc. 191, Pittsburgh, PA, 1990).

    Google Scholar 

  35. J.F. Ready, Effects of High Power Radiation (Academic Press, New York, 1971).

    Google Scholar 

  36. A. Inam, X.D. Wu, T. Venkatesan, S.B. Ogale, C.C. Chang, D. Dijkkamp, Appl. Phys. Lett. 51 (1987) p. 1112.

    Article  CAS  Google Scholar 

  37. S.R. Foltyn, R.E. Muenchausen, R.C. Estler, E. Peterson, W.B. Hutchinson, K.C. Ott, N.S. Nogar, and K.M. Hubbard in Laser Ablation for Materials Synthesis, edited by D.C. Payne and J.C. Bravman (Mater. Res. Soc. Symp. Proc. 191, Pittsburgh, PA, 1990) p. 205.

    Google Scholar 

  38. G. Koran, A. Gupta, R.J. Baserman, M.I. Lutyche, and R.B. Laibowitz, Appl. Phys. Lett. 55 (1989) p. 2450.

    Article  Google Scholar 

  39. R. Singh and J. Narayan, Phys. Rev. B 41 (1990) P. 8843.

    Article  CAS  Google Scholar 

  40. T. Venkatesan, X.D. Wu, A. Inam, J.B. Wachman, Appl. Phys. Lett. 52 (1988) p. 1193.

    Article  CAS  Google Scholar 

  41. S.E. Fulton, R.C. Dye, K.C. Ott, E. Peterson, K.M. Hubbard, W. Hutchinson, R.E. Muenchausen, R.C. Estler, and X.D. Wu, Appl. Phys. Lett. 59 (1991) p. 594.

    Article  Google Scholar 

  42. C.H. Chen, M.P. McCann, and R.C. Phillips, Appl. Phys. Lett. 53 (1988) p. 2701.

    Article  CAS  Google Scholar 

  43. P. Dye, R.D. Freenough, A. Issa, and P.H. Key, Appl. Phys. Lett. 53 (1988) p. 534.

    Article  Google Scholar 

  44. K.M. Yoo, R.R. Alfano, X. Fuo, M.P. Sarachik and L.L. Issacs, Appl. Phys. Lett. 54 (1989) p. 1278.

    Article  CAS  Google Scholar 

  45. J.P. Zheng, Q. Huang, T. Shaw, and H.S. Kwok, Appl. Phys. Lett. 54 (1989) p. 280.

    Article  CAS  Google Scholar 

  46. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McClean, and M. Croft, Appl. Phys. Lett. 51 (1987) p. 619.

    Article  CAS  Google Scholar 

  47. W.A. Weimer, Appl. Phys. Lett. 53 (1988) p. 2698.

    Article  Google Scholar 

  48. O. Auciello, S. Athavale, O.E. Hankins, M. Sito, A.F. Schreiner, and N. Biunno, Appl. Phys. Lett. 53 (1988) p. 72.

    Article  CAS  Google Scholar 

  49. D.B. Geohegan and D.N. Mashburn, Appl. Phys. Lett. 55 (1989) p. 2345.

    Article  CAS  Google Scholar 

  50. H.S. Kwok, D.T. Shaw, Q.Y. Ying, Z.P. Zheng, S. Witanachchi, E. Petrou, and H.S. Kim, Proc. SPIE 1187 (1989) p. 161.

    Article  Google Scholar 

  51. N.H. Cheng, Q.Y. Ying, J.P. Sheng, and H.S. Kwok, J. Appl. Phys. 69 (1991) p. 6349.

    Article  Google Scholar 

  52. C.E. Otis and R.W. Dreyfus, Phys. Rev. Lett. 67 (1991) p. 2102.

    Article  CAS  Google Scholar 

  53. R.C. Estler and N.S. Nogar, J. Appl. Phys. 69 (1991) p. 1654.

    Article  CAS  Google Scholar 

  54. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrarvi, Y.H. Min-Lee, W.L. McClean and M. Croft, Appl. Phys. Lett. 51 (1987) p. 619.

    Article  CAS  Google Scholar 

  55. L. Weidman and H. Helvajian, J. Appl. Phys. 70 (1991) p. 233.

    Google Scholar 

  56. D.B. Chrisey, J.S. Horwitz, and R.E. Leuchtner, Thin Solid Films, (submitted, 1991).

  57. C.H. Chen, T.M. Murphy, and R.C. Phillips, Appl. Phys. Lett. 57 (1990) p. 937.

    Article  CAS  Google Scholar 

  58. C.H. Becker and J.B. Pallix, J. Appl. Phys. 64 (1988) p. 5152.

    Article  CAS  Google Scholar 

  59. H. Dupendant, J.P. Favigan, D. Fivord, A. Lienard, J.P. Rebouillat, and Y. Souche, Appl. Surf. Sci. 43 (1989) p. 369.

    Article  CAS  Google Scholar 

  60. R.A. Neif led, E. Potenziani, W.R. Sinclair, W.T. Hill III, B. Turner, and A. Pinkas, Appl. Phys. Lett. 69 (1991) p. 1107.

    Google Scholar 

  61. S.H. Brongersma, J.C.S. Kools, T.S. Bailer, H.C. Beijerinck, and J. Dieleman, Appl. Phys. Lett. 59 (1991) p. 1311.

    Article  Google Scholar 

  62. N.S. Nogar, R.C. Dye, R.C. Estler, S.R. Foltyn, R.E. Muenchausen, and X.D. Wu, in Proceedings of Laser Ablation Workshop, Oak Ridge, (1990) (to be published).

  63. Sputtering by Particle Bombardment, edited by R. Behrisch (Springer Verlag, Berlin, 1983).

    Google Scholar 

  64. R. Kelly and R.W. Dreyfus, Nucl. Instrum. Methods B32 (1988) p. 314.

    Google Scholar 

  65. P.E. Dyer, A. Issa, P.H. Key, Appl. Phys. Lett. 57 (1990) p. 186.

    Article  CAS  Google Scholar 

  66. A. Gupta, B. Baren, K.G. Caseny, B.W. Hussy, and R. Kelly, Appl. Phys. Lett. 59 (1991) p. 1302.

    Article  Google Scholar 

  67. J.O. Hirshfelder, C.E. Curtis, and R.B. Bird, Molecular Theory of Gasses and Liquid (John Wiley and Sons, New York, 1954).

    Google Scholar 

  68. R.C. Dye, R.E. Muenchausen, and N.S. Nogar, Chem. Phys. Lett. 181 (1991) p. 531.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, J., Horwitz, J. Pulsed Laser Deposition History and Laser-Target Interactions. MRS Bulletin 17, 30–36 (1992). https://doi.org/10.1557/S0883769400040598

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400040598

Navigation