Skip to main content
Log in

The Influence of Preoxidation on the Corrosion of Copper Nuclear Waste Canisters in Aqueous Anoxic Sulphide Solutions

  • Article
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Scandinavian/Canadian high-level nuclear waste repository conditions are expected to evolve from initially warm and oxic to eventually cool and anoxic. During the warm oxic period, corrosion products will accumulate on the container surface. These deposits could impede the reaction of Cu with aqueous sulphide, the only reaction that could lead to the significant accumulation of additional corrosion damage under the long-term anoxic conditions. The kinetics of reaction of Cu with aqueous sulphide solutions have been studied using electrochemical and surface analytical techniques. Corrosion potential measurements were used to follow the evolution of the surface as oxides/hydroxides were converted to sulphides in the sulphide concentration range 10-5 to 10-3 mol/L. Changes in composition were followed by in-situ Raman spectroscopy. Of critical importance is whether or not a period of preoxidation of a Cu container surface can prevent subsequent reaction of the surface with remotely produced sulphide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. King. SKB Swedish Nuclear Fuel and Waste Management Co. Technical Report, TR-02-25 (2002).

  2. J. McMurry. Evolution of a Canadian Deep Geologic Repository: Base Scenario, Ontario Power Generation Report No: 06819-REP-01200-10092-R00 (2003).

  3. J. McMurry. Evolution of a Canadian Deep Geologic Repository: Base Scenario, Ontario Power Generation Report No: 06819-REP-01200-10127-R00 (2004).

  4. I. Puigdomenech, C. Taxen. SKB Swedish Nuclear Fuel and Waste Management Co. Technical Report, TR-00-13 (2000).

  5. SKB, Deep Repository for Spent Nuclear Fuel, SR 97 – Post Closure Safety TR-99-06 (1999).

  6. E. Mattsson. SKB Projekt Inkapsling Projekt PM, 97-3420-22, Stockholm (1997).

  7. O. Karnland et al. SKB Swedish Nuclear Fuel and Waste Management Co. Technical Report, TR-00-22 (2000).

  8. F. King, C. Litke, S. Ryan. Corrosion Science, 23, 1979 (1992).

    Article  Google Scholar 

  9. K. Pederson. SKB Swedish Nuclear Fuel and Waste Management Co. Technical Report, TR-00-04 (2000).

  10. M Pourbaix, A. Pourbaix. Geochim. Cosmochim. Acta, 56, 3157 (1992).

    Article  CAS  Google Scholar 

  11. S. Simard, M.S. Odziemkowski, D.E. Irish, L. Brossard, H. Menard. J. Appl. Electrochem., 31, 913 (2001).

    Article  CAS  Google Scholar 

  12. C.T. Lee, M.S. Odziemkowski, D.W. Shoesmith. J. Electrochem. Soc, 153(2), B33 (2006).

    Article  CAS  Google Scholar 

  13. S.M. Abd El Haleem, B. Ateya. J. Electroanal. Chem.., 117, 309 (1981).

    Article  CAS  Google Scholar 

  14. J. Ambrose, R. Barradas, D.W. Shoesmith. Electroanalytical Chem. And Interfacial Electrochem., 47, 47 (1973).

    Article  CAS  Google Scholar 

  15. H.-H. Strehblow, V. Maurice, P. Marcus. Electrochim. Acta, 46, 3755 (2001).

    Article  CAS  Google Scholar 

  16. M.R. Gennero De Chialvo, S.L. Marchiano, A.J. Arvia. J. Appl. Electrochem., 14, 165 (1984).

    Article  Google Scholar 

  17. M. Shirkhanzadeh, G.E. Thompson, V. Ashworth. Corrosion Science, 31, 293 (1990).

    Article  CAS  Google Scholar 

  18. H.-H. Strehblow, B. Titze. Electrochim. Acta, 25, 839 (1979).

    Article  Google Scholar 

  19. B. Hurley, R. McCreery. J. Electrochem. Soc., 150(8), B367 (2003).

    Article  CAS  Google Scholar 

  20. F. Texier, L. Servant, J.L. Bruneel, F. Argoul. J. Electroanal. Chem., 446, 189 (1998).

    Article  CAS  Google Scholar 

  21. N. Cioffi et al.. J. Mat. Chem., 11, 1434 (2001).

    Article  CAS  Google Scholar 

  22. D. Schwartz, R. Muller. Surface Science, 248, 349 (1991).

    Article  CAS  Google Scholar 

  23. S. Mayer, R. Muller. J. Electrochem. Soc., 139(2), 426 (1992).

    Article  CAS  Google Scholar 

  24. J.C. Hamilton, J.C. Famer, R.J. Anderson. J. Electrochem. Soc., 133(4), 739 (1986).

    Article  CAS  Google Scholar 

  25. S. Hartinger, B. Pettinger, K. Doblhofer. J. Electroanal. Chem., 397, 335 (1995).

    Article  Google Scholar 

  26. G. Parker, G. Hope, R Woods. Proc. Electrochem. Soc. (Electrochem. In Mineral Processing VI), 203, 181 (2003).

    Google Scholar 

  27. A. Kudelski. J. Raman Spec., 34, 853 (2003).

    Article  CAS  Google Scholar 

  28. R. Woods, G. Hope, K. Watling. J. App. Electrochem., 30, 1209 (2000).

    Article  CAS  Google Scholar 

  29. J. Smith, J.C. Wren, M. Odziemkowski, D.W. Shoesmith. Submitted to J. Electrochem Soc.

  30. S. Stewart, X. Zhang, D.W. Shoesmith, J.C. Wren, submitted to J. Electrochem. Soc.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J.M., Qin, Z., Wren, J.C. et al. The Influence of Preoxidation on the Corrosion of Copper Nuclear Waste Canisters in Aqueous Anoxic Sulphide Solutions. MRS Online Proceedings Library 985, 811 (2006). https://doi.org/10.1557/PROC-985-0985-NN08-11

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-985-0985-NN08-11

Navigation