Skip to main content
Log in

Elastic Constants of Nanometer Thick Diamond-like Carbon Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Carbon films of thickness down to 2 nanometers are necessary to achieve a storage density of 100 Gbit/in2 in magnetic hard disks. Reliable methods to measure the properties of these ultrathin films still have to be developed. We show for the first time that combining Surface Brillouin Scattering (SBS) and X-ray reflectivity measurements the elastic constants of such films can be obtained. Tetrahedral amorphous carbon films were deposited on silicon, by an S bend filtered cathodic vacuum arc, which provides a continuous coverage on large areas free of macroparticles. Films of thickness down to 2 nm and density of ∼3 g/cm3 were produced and characterized. The dispersion relations of surface acoustic waves are measured by SBS for films of different thickness and for the bare substrate. Waves can be described by a continuum elastic model. Fitting of the dispersion relations, computed for given film properties, to the measured dispersion relations allows the derivation of the elastic constants. Fora 8 nm thick film we find a Young’s modulus E around 400 GPa, with a shear modulus G lying in the 130 - 210 GPa interval. For a 4.5 nm thick film, E is around 240 GPa, with G lying in the 70 - 130 GPa interval. Results for even thinner films become highly sensitive to the precision of the substrate properties, and indicate that the above values are lower bounds. We thus show that we can grow and characterize nanometer size tetrahedral amorphous carbon films, which maintain their density and mechanical properties down to the nm range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Goglia, J. Berkowitz, J. Hoehn, A. Xidis and L. Stover, Diamond Relat. Mater. 10, 271–277 (2001)

    Google Scholar 

  2. J. Robertson, Thin Solid Films 383, 81–88 (2001)

    Google Scholar 

  3. G.M. Pharr, D.L. Callahan, S.D. McAdams, T.Y. Tsui, S. Anders, J.W. Ager, I.G. Brown, C.S. Bhatia, S.R.P. Silva and J. Robertson, Appl. Phys. Lett., 68, 779 (1996)

    Google Scholar 

  4. J.A. Knapp, D.M. Follstaedt, S. M. Myers, J.C. Barbour and T. A. Friedmann, J. Appl. Phys. 85, 1460 (1999)

    Google Scholar 

  5. T. A. Friedmann, J. P. Sullivan, J.A. Knapp, D. R. Tallant, D.M. Follstaedt, D. L. Medlin and P. B. Mirkarimi, Appl. Phys. Lett., 71, 3820 (1997)

    Google Scholar 

  6. M. Grimsditch, in Handbook of elastic properties of solids, liquids and gases, Vol. 1, ed. by M. Levy et al.Academic Press / Harcourt Publishers Ltd., Sidcup, UK, 2000.

  7. J. D. Comins, in Handbook of elastic properties of solids, liquids and gases, Vol. 1, ed. by M. Levy et al.Academic Press / Harcourt Publishers Ltd., Sidcup, UK, 2000.

  8. P. Zinin M. H. P., Manghnani., S. Tlechev, V. Askarpour, O. Lefeuvre and A. Every, Phys. Rev. B, 60 2844 (1999).

    Google Scholar 

  9. M.G. Beghi, C.E. Bottani, P.M. Ossi, T. Lafford and B.K. Tanner, J. Appl. Phys., 81, 672 (1997), and references therein

    Google Scholar 

  10. A.C. Ferrari, J. Robertson, M.G. Beghi, C.E. Bottani, R. Ferulano and R. Pastorelli, Appl. Phys. Lett. 75, 1893 (1999)

    Google Scholar 

  11. A.C. Ferrari, J. Robertson, R. Pastorelli, M.G. Beghi and C.E. Bottani, Mat. Res. Soc., Symp. Proc. 594, 289 (2000)

    Google Scholar 

  12. M.G. Beghi, C.E. Bottani, and R. Pastorelli, in Mechanical Properties of Structural Films, ASTM STP 1413, ed. by C. Muhlstein and S. B. Brown, American Society for Testing and Materials, West Conshohocken, PA, 2001.

  13. K.B.K. Teo, S.E. Rodil, J. T. H. Tsai, A. C. Ferrari, J. Robertson and W.I. Milne, J. Appl. Phys. 89, 3706 (2001)

    Google Scholar 

  14. A.C. Ferrari, A. LiBassi, B. K. Tanner, V. Stolojan, J. Yuan, L. M. Brown, S. E. Rodil, B. Kleinsorge, and J. Robertson, Phys. Rev. B 62, 11089 (2000).

    Google Scholar 

  15. B.K. Tanner, A. LiBassi, A.C. Ferrari and J. Robertson, these Proceedings.

  16. G.W. Farnell and E.L. Adler, in Physical Acoustics, Vol. 9, ed. by W. P. Mason and R. N. Thurston,Academic, New York, 1972, p.35

    Google Scholar 

  17. R. Pastorelli, S. Tarantola, M.G. Beghi, C.E. Bottani, and A. Saltelli, in Mechanical Properties of Structural Films, ASTM STP 1413, ed. by C. Muhlstein and S. B. Brown, American Society for Testing and Materials, West Conshohocken, PA, 2001.

  18. R. Pastorelli, S. Tarantola M.G. S., Beghi, C.E. Bottani and A. Saltelli, Surf. Sci. 468, 37 (2000).

    Google Scholar 

  19. R.P. Stoddart, J. C. Crowhurst, A. G. Every and J.D Comins, J.Opt. Soc. of America B, 15, 2481 (1998)

    Google Scholar 

  20. H.J. McSkimin and P. Andreatch, J. Appl. Phys. 35, 3312 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beghi, M.G., Bottani, C.E., LiBassi, A. et al. Elastic Constants of Nanometer Thick Diamond-like Carbon Films. MRS Online Proceedings Library 675, 1161 (2001). https://doi.org/10.1557/PROC-675-W11.6.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-675-W11.6.1

Navigation