Skip to main content
Log in

Theoretical Performance Of Mid-Infrared Broken-Gap Multilayer Superlattice Lasers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present calculations of the intersubband absorption and Auger recombination rate of superlattices based on the InAs/GaInSb material system involving more than two layers in the repeating unit cell and strain balanced to match the GaSb substrate. We demonstrate theoretically the presence of final-state optimization in a 4.0 μm strain-balanced brokengap superlattice. This system's band structure is optimized not only at the band edge, where the valence density of states has been reduced, but also at resonance energies, where reside final states for Auger and intersubband processes. The spectral structure of the intersubband absorption, which for some wavelengths near the lasing wavelength can exceed 500 cm-1 at lasing threshold, has been considered when designing this active region. Fortunately, final-state optimized designs which minimize Auger recombination tend to minimize intersubband absorption as well. The effectiveness of final-state optimization is evaluated by considering band structures with identical band edge structure, but different final-state structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. C. Hasenberg, R. H. Miles, A. R. Kost, and L. West, IEEE J. Q. E. 33, 1403 (1997).

    Article  CAS  Google Scholar 

  2. H.K. Choi, G.W. Turner and M.J. Manfra, Electron. Lett. 32, 1296 (1996); H.K. Choi, G.W. Turner, M.J. Manfra and M.K. Connors, Appl. Phys. Lett. 68, 2936 (1996).

    Article  CAS  Google Scholar 

  3. J.I. Malin, J.R. Meyer, C.L. Felix, J.R. Lindle, L. Goldberg, C.A. Hoffman, and F.J. Bartoli, Appl. Phys. Lett. 68, 2976 (1996).

    Article  CAS  Google Scholar 

  4. C. L. Felix, J. R. Meyer, I. Vurgaftan, C. H. Lin, S. J. Murry, D. Zhang, and S. S. Pei, IEEE Photonics Technol. Lett. 9, 734 (1997).

    Article  Google Scholar 

  5. T. Ashley, C. T. Elliott, R. Jeffries, A. D. Johnson, G. J. Pryce, A. M. White, and M. Carroll, Appl. Phys. Lett. 70, 931 (1997).

    Article  CAS  Google Scholar 

  6. H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, and J. C. Connolly, Appl. Phys. Lett. 66, 1942 (1995).

    Article  CAS  Google Scholar 

  7. S. R. Kurtz, A. A. Allerman, and R. M. Biefeld, Appl. Phys. Lett. 70, 3188 (1997).

    Article  CAS  Google Scholar 

  8. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, Science 264, 553 (1994). J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, A.L. Hutchinson, and A.Y. Cho, Electron. Lett. 32, 560 (1996).

    Article  CAS  Google Scholar 

  9. M. E. Flatté, J. T. Olesberg, S. A. Anson, T. F. Boggess, T. C. Hasenberg, R. H. Miles, and C. H. Grein, Appl. Phys. Lett. 70, 3212 (1997).

    Article  Google Scholar 

  10. J. T. Olesberg, S. A. Anson, S. W. McCahon, M. E. Flatté, T. F. Boggess, D. H. Chow, and T. C. Hasenberg, Appl. Phys. Lett. 72, 229 (1998).

    Article  CAS  Google Scholar 

  11. C.H. Grein, P.M. Young, M.E. Flatté, and H. Ehrenreich, J. Appl. Phys. 78, 7143 (1995).

    Article  CAS  Google Scholar 

  12. M. E. Flatté, T. C. Hasenberg, J. T. Olesberg, S. A. Anson, T. F. Boggess, C. Yan, and D. L. McDaniel, Jr., Appl. Phys. Lett. 71, 3764 (1997).

    Article  Google Scholar 

  13. K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, Phys. Rev. B 46, 13194 (1992).

    Article  CAS  Google Scholar 

  14. S. Brand and R. A. Abram, J. Phys. C 17, L571 (1984).

    Article  CAS  Google Scholar 

  15. A. Haug, J. Phys. C 16, 4159 (1983).

    Article  CAS  Google Scholar 

  16. V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, Phys. Rev. B 52, 2516 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported in part by the United States Air Force, Air Force Materiel Command, Phillips Laboratory (PL), Kirtland AFB New Mexico 87117-5777 (contract F29601-97-C0041) and the National Science Foundation (grants ECS-9406680 and ECS-9707799).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flatté, M.E., Olesberg, J.T. & Grein, C.H. Theoretical Performance Of Mid-Infrared Broken-Gap Multilayer Superlattice Lasers. MRS Online Proceedings Library 484, 71–81 (1997). https://doi.org/10.1557/PROC-484-71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-484-71

Navigation