Skip to main content
Log in

Raman Spectroscopy of Ion-Implanted Silicon

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Raman spectroscopy is used to characterize silicon implanted with boron at a dose of 1014/cm2 or less and thermally annealed. The Raman scattering strengths and band shapes of the first-order optical mode at 520 cm−1 and of the second-order phonon modes are investigated to determine which modes are sensitive to the boron implant. The asimplanted samples show diminishing Raman scattering strength as the boron dose increases when the incident laser beam is 60° with respect to the sample normal. Thermal annealing restores some of the Raman scattering strength. Three excitation wavelengths are used and the shortest, 457.9 nm, yields the greatest spectral differences from unimplanted silicon. The backscattering geometry shows a variety of changes in the Raman spectrum upon boron implantation. These involve band shifts of the first-order optical mode, bandwidth variations of the first-order optical mode, and the intensity of the second-order mode at 620 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Braunstein, D. Tuschel, S. Chen, and S.-T. Lee, J. Appl. Phys. 66, 3515 (1989).

    Article  CAS  Google Scholar 

  2. X. Huang, J. Phys. D: Appl. Phys. 28, 202 (1995).

    Article  CAS  Google Scholar 

  3. X. Huang, F. Ninio, L. J. Brown, and S. Prawer, J. Appl. Phys. 77, 5910 (1995).

    Article  CAS  Google Scholar 

  4. A. Othonos and C. Christofides, Nucl. Instrum. Meth. Phys. Res. B 1117, 367 (1996).

    Article  Google Scholar 

  5. D. D. Tuschel, J. P. Lavine, and J. B. Russell, in Diagnostic Techniques for Semiconductor Materials Processing II, edited by S. W. Pang, O. J. Glembocki, F. H. Pollak, F. G. Celii, and C. M. Sotomayor Torres (Mater. Res. Soc. Proc. 406, Pittsburgh, PA, 1996) pp. 549–554.

  6. A. C. de Wilton, M. Simard-Normandin, and P. T. T. Wong, SPIE 623, 26 (1986).

    Google Scholar 

  7. A. C. de Wilton, M. Simard-Normandin, and P. T. T. Wong, J. Electrochem. Soc. 133, 988 (1986).

    Article  Google Scholar 

  8. K. Uchinokura, T. Sekine, and E. Matsuura, Solid State Commun. 11, 47 (1972).

    Article  CAS  Google Scholar 

  9. K. Uchinokura, T. Sekine, and E. Matsuura, J. Phys. Chem. Solids 35, 171 (1974).

    Article  CAS  Google Scholar 

  10. M. Cardona, S. C. Chen, and S. P. Varma, Phys. Rev. B 23, 5329 (1981).

    Article  CAS  Google Scholar 

  11. I. DeWolf, Semicond. Sci. Technol. 11, 139 (1996).

    Article  CAS  Google Scholar 

  12. H. Tanino, A. Kuprin, H. Deai, and N. Koshida, Phys. Rev. B 53, 1937 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuschel, D.D., Lavine, J.P. Raman Spectroscopy of Ion-Implanted Silicon. MRS Online Proceedings Library 439, 47–52 (1996). https://doi.org/10.1557/PROC-439-47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-439-47

Navigation