Skip to main content
Log in

The Influence of Xenon and Argon Ion Irradiation Parameters on Defect Formation in Silicon

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Single-crystal silicon has been irradiated with xenon ions at energies of 100 and 200 keV and argon ions at 110 keV. The irradiation fluence varied in the range of the displacement per atom (dpa) from 0.1 to 1 for both types of ions and selected energies. The influence of irradiation on the destruction of the silicon structure was studied using Rutherford backscattering (RBS) combined with channeling and Raman scattering (RS). The stages of silicon crystal structure destruction based on RBS and RS for different irradiation fluences are demonstrated. It is shown that defects accumulate in the modified layer as the fluence increases to a value corresponding to 0.5 dpa; then highly defective regions merge into amorphous layers. At a dpa of 1, the structure of a single crystal does not become disordered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. K. A. Gonchar, A. A. Zubairova, A. Schleusener, et al., Nanoscale Res. Lett. 11, 357 (2016).

    Article  ADS  Google Scholar 

  2. M. B. Gongalsky, Yu. V. Kargina, L. A. Osminkina, et al., Appl. Phys. Lett. 107, 233702 (2015).

    Article  ADS  Google Scholar 

  3. A. Kozlovskiy, M. Zdorovets, and K. Kadyrzhanov, Appl. Nanosci. 9, 1091 (2018).

    Article  ADS  Google Scholar 

  4. D. E. Presnov, S. A. Dagesyan, I. V. Bozhev, et al., Mosc. Univ. Phys. Bull. 74, 165 (2019).

    Article  ADS  Google Scholar 

  5. M. Kutuzau, A. Shumskaya, E. Kaniukov, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 460, 212 (2019).

    Google Scholar 

  6. S. D. Trofimov, S. A. Tarelkin, S. V. Bolshedvorskii, et al., Opt. Mater. Express 10, 198 (2020).

    Article  ADS  Google Scholar 

  7. E. Bernardi, R. Nelz, S. Sonusen, et al., Crystals 7 (5), 124 (2017).

    Article  Google Scholar 

  8. A. I. Morkovkin, E. A. Vorobyeva, A. P. Evseev, Yu. V. Balakshin, and A. A. Shemukhin, Semiconductors 53, 1683 (2019).

    Article  ADS  Google Scholar 

  9. E. M. Elsehly N. G. Chechenin, A. V. Makunin, et al., Rad. Phys. Chem. 146, 19 (2018).

    Article  ADS  Google Scholar 

  10. M. Callisti, M. Karlik, and T. Polcar, J. Nucl. Mater. 473, 18 (2016).

    Article  ADS  Google Scholar 

  11. A. E. Ieshkin, D. S. Kireev, A. A. Tatarintsev, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 460, 165 (2019).

    Google Scholar 

  12. S. Pinilla, T. Campo, J. M. Sanz, et al., Surf. Coat. Technol. 377, 124883 (2019).

    Article  Google Scholar 

  13. Yu. V. Balakshin, A. V. Kozhemiako, S. Petrovic, M. Erich, A. A. Shemukhin, and V. S. Chernysh, Semiconductors 53, 1011 (2019).

    Article  ADS  Google Scholar 

  14. A. A. Shemukhin, A. P. Evseev, A. V. Kozhe- miako, B. Merzuk, V. I. Egorkin, Yu. S. Fedotov, A. V. Danilov, and V. S. Chernysh, Mosc. Univ. Phys. Bull. 74, 620 (2019).

    Article  ADS  Google Scholar 

  15. L. Fauquier, B. Pelissier, D. Jalabert, et al., Microelectron. Eng. 169, 24 (2017).

    Article  Google Scholar 

  16. I. K. Gainullin, Surf. Sci. 677, 324 (2018).

    Article  ADS  Google Scholar 

  17. I. D. Kharitonov, V. A. Mazgunova, V. A. Babain, et al., Radiochemistry 60, 158 (2018).

    Article  Google Scholar 

  18. A. V. Nazarov, V. S. Chernysh, K. Nordlund, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 406, 518 (2017).

    Google Scholar 

  19. K. Nordlund, S. J. Zinkle, A. E. Sand, et al., J. Nucl. Mater. 512, 450 (2018).

    Article  ADS  Google Scholar 

  20. A. V. Krasheninnikov and K. Nordlund, J. Appl. Phys. 107, 071301 (2010).

    Article  ADS  Google Scholar 

  21. V. I. Fabelinsky, D. N. Kozlov, Yu. N. Polivanov, et al., J. Raman Spectrosc. 50, 1311 (2019).

    Article  ADS  Google Scholar 

  22. A. A. Tonkikh, V. I. Tsebro, E. A. Obraztsova, et al., Nanoscale 11, 6755 (2019).

    Article  Google Scholar 

  23. A. V. Kozhemiako, A. P. Evseev, Yu. V. Balakshin, and A. A. Shemukhin, Semiconductors 53, 800 (2019).

    Article  ADS  Google Scholar 

  24. I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).

    Article  ADS  Google Scholar 

  25. R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, et al., Phys. B (Amsterdam, Neth.) 337, 36 (2003).

  26. Yu. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemiako, and V. S. Chernysh, Tech. Phys. 63, 1861 (2018).

    Article  Google Scholar 

  27. K. V. Karabeshkin, P. A. Karaseov, and A. I. Titov, Semiconductors 47, 206 (2013).

    Article  Google Scholar 

  28. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).

    Google Scholar 

  29. A. A. Shemukhin, Yu. V. Balakshin, A. P. Evseev, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 406, 507 (2017).

    Google Scholar 

  30. O. Camara, M. A. Tunes, G. Greaves, et al., Ultramicroscopy 207, 112838 (2019).

    Article  Google Scholar 

  31. L. Pelaz, L. A. Marques, and M. Aboy, Comput. Mater. Sci. 27, 1 (2003).

    Article  Google Scholar 

  32. E. Friedland, Nucl. Instrum. Methods Phys. Res., Sect. B 391, 10 (2017).

    Google Scholar 

  33. K. Imada, M. Ishimaru, H. Xue, et al., J. Nucl. Mater. 478, 310 (2016).

    Article  ADS  Google Scholar 

  34. E. Aradi, J. Lewis-Fell, G. Greaves, et al., Appl. Surf. Sci. 501, 143969 (2020).

    Article  Google Scholar 

  35. J. Li, H. Huang, G. Lei, et al., J. Nucl. Mater. 454, 173 (2014).

    Article  ADS  Google Scholar 

  36. S. E. Donnelly, J. A. Hinks, P. D. Edmondson, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 242, 686 (2006).

    Google Scholar 

  37. M. Nastasi and J. W. Mayer, Ion Implantation and Synthesis of Materials (Springer, Berlin, 2006), p. 257.

    Book  Google Scholar 

  38. M. T. Robinson, Nucl. Instrum. Methods Phys. Res., Sect. B 67, 396 (1992).

    Google Scholar 

  39. M. Jaraiz, L. Pelaz, E. Rubio, et al., Mater. Proc. Model. 532, 43 (2011).

    Google Scholar 

  40. R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, et al., Phys. B (Amsterdam, Neth.) 337, 36 (2003).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-32-00833 mol-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Balakshin.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakshin, Y.V., Kozhemiako, A.V., Evseev, A.P. et al. The Influence of Xenon and Argon Ion Irradiation Parameters on Defect Formation in Silicon. Moscow Univ. Phys. 75, 218–224 (2020). https://doi.org/10.3103/S0027134920030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920030030

Keywords:

Navigation