Skip to main content
Log in

In-Situ Derivative Cyclic Voltabsorptometric Studies On Poly-3-Methylthiophene

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Spectroscopic behavior of poly-3-methylthiophene (P3MT) has been studied employing derivative cyclic volt-absorptometric (DCVA) techniques. In the DCVA technique, the derivative absorption signal (dA/dt) is recorded as a function of the applied potential. The dA/dt signals, the spectroscopic analog of electrochemical currents in cyclic voltammetry, are capable of monitoring the potential dependency for the absorption band effectively discriminating against nonfaradaic signals. The DCVA studies on the P3MT system show that the neutral form of P3MT, absorbing at 490 nm (at less than 0.3 V vs. Ag), changes to the radical cation form, which absorbs at 760 nm. Initially, the formation of the radical cation goes through an isosbestic point, indicating that the conversion of the neutral to radical (polaron) form is chemically reversible. However, upon increasing the electrode potential, the rate of the radical formation at 760 nm starts to decrease, with the formation of another band at about 1250 nm, attributable to a quinoid (bipolaron) form. This trend begins above about 0.6 V, shifting to a more positive voltage as the thickness of the film grows. This observation indicates that the electrochemical conversion of the neutral to radical form, followed by the quinoid form, is a slow process controlled by the diffusion of counter ions through the film. In-situ conductivity measurements as a function of applied potentials support the observed spectroscopic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Little, Phys. Rev. 134A, 1416(1964); l(b). H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, J. Chem, Soc., Chem. Commun. 1977, 578.

    Article  Google Scholar 

  2. C.I. Simmionescu and V. Percec, Prog, Polum, Sci., 8, 133 (1982).

    Article  Google Scholar 

  3. R.H. Baughman, J.L. Bredas, R.R. Elsenbaumer, and L.W. Shacklette, Chem, Rev, 82, 209 (1982).

    Article  CAS  Google Scholar 

  4. A.O. Patil, A.J. Heeger, and F. Wudl, Chem. Rev., 88, 183 (1988).

    Article  CAS  Google Scholar 

  5. R.B. Seymour, Editor, Conductive Polymer, Plenum Press, New York (1981).

    Google Scholar 

  6. J.C. W. Chien, Polyacetylene - Chemistry, Physics, and Material Science, Academic Press, New York (1984).

    Google Scholar 

  7. A.J. Epstein and E. M. Conwell, Editors, Proceedings International Conf, Low-Dim, Conductors, Mol, Cryst. Liq, Cryst., 83, 1033–1384 (1982).

  8. M. Aldissi, Editor, Proceedings of the International Conference on Science and Technology of Synthetic Metals (ICSM '88), Elsevier Sequoia S.A. Lausanne (1989).

    Google Scholar 

  9. R.J. Waltman, J. Bargon, and A.F. Diaz, J. phys. Chem., 87, 1459 (1983).

    Article  CAS  Google Scholar 

  10. S. Tanaka, M. Sato, and K. Kaeriyama, Makromol. Chem., 185, 1295 (1984); 10(b). Etemad, S; Heeger, A.J.; MacDiarmid A.G. Annu. Rev, Phys, Chem., 1982,33, 443.

    Article  CAS  Google Scholar 

  11. K. Kaneto, S. Ura, K. Yoshino, and Y. Inuish, Jpn. J. Appl. Phys., 23, L189 (1984).

    Article  Google Scholar 

  12. M. Sato, S. Tanaka, and K. Kaeriyama, J. Chem. Soc.. Chem, Commun., 1986, 873.

  13. K.Y. Jen, G.G. Miller, and R.L. Elsenbaumer, J. chem, Soc.. Chem, Commun, 1986, 1346.

    Google Scholar 

  14. S. Hotta, S.D. Rughooputh, A.J. Heeger, and F. Wudl, Macromolecules, 20, 212 (1987).

    Article  CAS  Google Scholar 

  15. S.N. Hoier, D.S. Ginley, and S.-M. Park, J. Electrochem. Soc., 135, 91 (1988); (b). Kaneto, K.; Kohno, Y; Yoshino, K. Mol, Cryst. Liq. Crys. 1985, 118, 217.

    Article  CAS  Google Scholar 

  16. E.W. Paul, A.J. Ricco, and M. S. Wrighton, J. Phys. chem., 89, 1441. (1985).

    Article  CAS  Google Scholar 

  17. C.-H. Pyun and S.-M. Park, Anal. Chem.,. 58, 251 (1986).

    Article  CAS  Google Scholar 

  18. D.E. Stilwell and S.-M. Park, J. Electrochem. Soc, 136, 427 (1989).

    Article  CAS  Google Scholar 

  19. C. Zhang and S.-M. Park, Anal. Chem, 60, 1639 (1988); (b) C. Zhang and S.-M. Park, Bull, Korean Chem, Soc, 10, 302(1989).

    Article  CAS  Google Scholar 

  20. S.N. Hoier and S.-M. Park, 4thInt, SAMPE Electronics Conf., 4, 357. (1990).

    CAS  Google Scholar 

Download references

Acknowledgement

We wish to thank M. B. Sinclair and M. A. Valdez, Sandia National Laboratories, for the fabrication of the electrode for the conductivity experiment. This work was supported by the United States Department of Energy under Contract DEAC04-76DP00789.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoier, S.N., Ginley, D.S. & Park, S. In-Situ Derivative Cyclic Voltabsorptometric Studies On Poly-3-Methylthiophene. MRS Online Proceedings Library 214, 169–175 (1990). https://doi.org/10.1557/PROC-214-169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-214-169

Navigation