Skip to main content
Log in

Using Peptide Hetero-assembly to Trigger Physical Gelation and Cell Encapsulation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Stem cell transplantation holds tremendous potential for the treatment of various trauma and diseases. However, the therapeutic efficacy is often limited by poor and unpredictable post-transplantation cell survival. While hydrogels are thought to be ideal scaffolds, the sol-gel phase transitions required for cell encapsulation within commercially available biomatrices such as collagen and Matrigel often rely on non-physiological environmental triggers (e.g., pH and temperature shifts), which are detrimental to cells. To address this limitation, we have designed a novel class of protein biomaterials: Mixing-Induced Two-Component Hydrogels (MITCH) that are recombinantly engineered to undergo gelation by hetero-assembly upon mixing at constant physiological conditions, thereby enabling simple, biocompatible cell encapsulation and transplantation protocols. Building upon bio-mimicry and precise molecular-level design principles, the resulting hydrogels have tunable viscoelasticity consistent with simple polymer physics considerations. MITCH are reproducible across cell-culture systems, supporting growth of human endothelial cells, rat mesenchymal stem cells, rat neural stem cells, and human adipose-derived stem cells. Additionally, MITCH promote the differentiation of neural progenitors into neuronal phenotypes, which adopt a 3D-branched morphology within the hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SM. Willerth, SE Sakiyama-Elbert, Adv. Drug Delivery Rev Rev. 60, 263 (2008).

    Article  CAS  Google Scholar 

  2. A. Bjorklund, et al, Brain Res Res. 886, 82 (2000).

  3. C. Siatskas, CC. Bernand, Current Molecular Medicine 9, 992 (2009).

    Article  CAS  Google Scholar 

  4. JH. Kordower, et al, Mov. Disord Disord. 13, 383 (1998).

    Article  CAS  Google Scholar 

  5. JH. Kordower, et a., N. Engl. J. Med. 332, 1118 (995).

  6. F. Cao, et al, J. Tissue Eng. Regen. Med Med. 1, 465 (2007).

    Article  CAS  Google Scholar 

  7. MA. Laflamme, et al, Nat. Biotechnol Biotechnol. 25, 1015 (2007).

    Article  CAS  Google Scholar 

  8. F. Brandl, F. Sommer, A. Goepferich, Biomaterials 28, 134 (2007).

    Article  CAS  Google Scholar 

  9. WA. Petka, et al, Sci Science 281, 389 (1998).

    CAS  Google Scholar 

  10. RM. Capito, et al, Science 319, 1812 (2008).

    Article  CAS  Google Scholar 

  11. L. Haines -Buterick, et al, Poc. Natl. Acad. Sci. USA 104, 7791 (2007).

    Article  Google Scholar 

  12. DJ. Pochan, et al, J. Am. Chem. Soc. 125, 11802 (2003).

    Article  CAS  Google Scholar 

  13. KL Niece, et al, J. Am. Chem. Soc. 125, 7146 (2003).

    Article  CAS  Google Scholar 

  14. BM. Gillette, et al, Nat. Mater. 7, 636 (2008).

    Article  CAS  Google Scholar 

  15. S. Wang, et al, Tissue Eng. Part A 14, 227 (2008).

    Article  CAS  Google Scholar 

  16. AI. Teixeira, JK. Duckworth, O. Hermanson, Cell Res. 17, 56 (2007).

    Article  CAS  Google Scholar 

  17. CTS. Wong Po Foo, et al, Poc. Natl. Acad. Sci. USA 106, 22067 (2009).

    Article  Google Scholar 

  18. JC. Crocker, DG Grier, J. C Colloid Interface Sci. 179, 298 (1996).

    Article  CAS  Google Scholar 

  19. X. Huang, Nat. Struct Biol. 7, 634 (2000).

    Article  CAS  Google Scholar 

  20. PJ. Flory, J. Am. Chem. Soc. 63, 3083 (1941).

    Article  CAS  Google Scholar 

  21. V. KAnelis, D. Rotin, JD. Forman-Kay, Nat. Struct. Biol. 8, 407 (2001).

    Article  CAS  Google Scholar 

  22. WP. Russ, et al, Nature 437, 579 (2005).

    Article  CAS  Google Scholar 

  23. MH. Zaman, et al, Poc. Natl. Acad. Sci. USA 103, 10889 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parisi-Amon, A., Foo, C.W.P., Lee, J.S. et al. Using Peptide Hetero-assembly to Trigger Physical Gelation and Cell Encapsulation. MRS Online Proceedings Library 1272, 508 (2010). https://doi.org/10.1557/PROC-1272-NN05-08

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1272-NN05-08

Navigation