Skip to main content
Log in

Theoretical Study on N Doping in Carbon Materials for Hydrogen Storage

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Interaction between nitrogen-substituted graphene-like compounds and hydrogen was investigated using ab initio molecular orbital method in the aspect of hydrogen storage. We adopted coronene as a model compound for fragmented graphene-like carbon materials and compared the interaction between hydrogen and pure or N-substituted coronenes by changing nitrogen positions. Among the assumed 19 N-substituted models, polarozabilities and HOMO–LUMO gaps were compared to evaluate physisorption and chemisorption energies. As for chemisorption, two N-substituted models were selected and closely examined to reveal the dependence on both nitrogen-substitution and hydrogen-adsorption positions. Potential energy surfaces as a function of H–H bond length and H2–coronen distance showed that the barrier height for hydrogen chemisorption strongly depends on N-substitution positions. The chemisorbed products of N-substituted coronenes are stabilized or destabilized compared with the pure carbon case depending on the sites of N-substitution and H-adsorption. These results suggest that N-substitution at certain positions possibly improve hydrogen storage properties of graphene-like materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Dillon M. J. Heben Appl. Phys. A72 133 (2001).

    Article  Google Scholar 

  2. A. Züttel, S. Orimo MRS Bulletin, 705 (2002).

  3. R. Ströbel, J. Garche P. T. Moseley L. Jörissen, G. Wolf Journal of Power Sources, 159 781 (2006).

    Article  Google Scholar 

  4. H. Nishihara P.X. Hou L.X. Li M. Ito M. Uchiyama T. Kaburagi A. Ikura J. Katamura T. Kawarada K. Mizuuchi T. Kyotani J. Phys. Chem. C113 3189 (2009).

    Google Scholar 

  5. H. Nishihara Q.H. Yang P.X. Hou M. Unno S. Yamauchi R. Saito J. I. Paredes A. Martínez-Alonso, J. M. D. Tascón, Y. Sato M. Terauchi T. Kyotani Carbon 47 1220 (2009).

    Article  CAS  Google Scholar 

  6. L. Wang, F. H. Yang R. T. Yang AIChE Journal 55 1823 (2009).

    Article  CAS  Google Scholar 

  7. Z. Yang Y. Xia X. Sun R. Mokaya J. Phys. Chem. B110 18424 (2006).

    Article  Google Scholar 

  8. B. Viswanathan M. Sankaran Diamond & Related Materials 18 429 (2009).

    Article  CAS  Google Scholar 

  9. X. B. Zhao B. Xiao A. J. Fletcher K. M. Thomas J. Phys. Chem. B109 8880 (2005).

    Article  Google Scholar 

  10. C. Liu Y. Y. Fan M. Liu H. T. Cong H. M. Cheng S. Dresselhaus Science 286 1127 (1999).

    Article  CAS  Google Scholar 

  11. D. C. Elias R. R. Nair T. M. G. Mohiuddin S. V. Morozov P. Blake M. P. Halsall A. C. Ferrari D. W. Boukhvalov M. I. Katsnelson A. K. Geim K. S. Novoselov Science 323 610 (2009) .

    Article  CAS  Google Scholar 

  12. M. W. Schmidt K. K. Baldridge J. A. Boatz J. H. Jensen S. Koseki N. Matsunaga M. S. Gordon K. A. Nguyen S. Su T. L. Windus S. T. Elbert J. Montgomery M. Dupuis J. Comput. Chem. 14 1347 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayanuma, M., Ikeshoji, T. & Ogawa, H. Theoretical Study on N Doping in Carbon Materials for Hydrogen Storage. MRS Online Proceedings Library 1216, 804 (2009). https://doi.org/10.1557/PROC-1216-W08-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1216-W08-04

Navigation