Skip to main content

Advertisement

Log in

An hydrogen adsorption study on graphene-based surfaces with core–shell type catalysts

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

An hydrogen adsorption study on graphene-based surfaces consisting of nitrogen-doped graphene and core–shell type catalysts of initially Pd\(_{13}\), Pt\(_{13}\), PdPt\(_{12}\) and PtPd\(_{12}\) core–shells, is presented in this work. Density functional theory results indicate correlation between charge transfer and structural properties, hydrogen adsorption energies, magnetic behavior and electronic properties. Reduction of hydrogen, together with higher values of charge transfer was observed for high hydrogen dissociation, compared to the case of non-hydrogen dissociation. In some cases, these values may be almost an order of magnitude larger than that of non-hydrogen dissociation. Hydrogen dissociation is also related to oxidation of the surface and correlates with a non-core shell-type structure, high adsorption energies and low magnetic moments, in general. Besides, core shell-type structure dramatically changes the magnetic and electronic properties of charge transfer. The results obtained in this work may provide important information for storing hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rangel E, Sansores E, Vallejo E, Hernández-Hernández A, López-Pérez PA (2016) Study of the interplay between N-graphene defects and small Pd clusters for enhanced hydrogen storage via a spill-over mechanism. Phys Chem Chem Phys 18(48):33158–33170. https://doi.org/10.1039/C6CP06497C

    Article  CAS  Google Scholar 

  2. López MJ, Blanco-Rey M, Juaristi JI, Alducin M, Alonso JA (2017) Manipulating the magnetic moment of palladium clusters by adsorption and dissociation of molecular hydrogen. J Phys Chem C 121(38):20756–20762. https://doi.org/10.1021/acs.jpcc.7b03996

    Article  CAS  Google Scholar 

  3. Luhadiya N, Kundalwal SI, Sahu SK (2021) Investigation of hydrogen adsorption behavior of graphene under varied conditions using a novel energy-centered method. Carbon Lett 31:655–666. https://doi.org/10.1007/s42823-021-00236-3

    Article  Google Scholar 

  4. Kag D, Luhadiya N, Patil ND, Kundalwal SI (2021) Strain and defect engineering of graphene for hydrogen storage via atomistic modelling. Int J Hydrogen Energy 46(43):22599–22610. https://doi.org/10.1016/j.ijhydene.2021.04.098

    Article  CAS  Google Scholar 

  5. Luhadiya N, Kundalwal SI, Sahu SK (2022) Adsorption and desorption behavior of titanium-decorated polycrystalline graphene toward hydrogen storage: a molecular dynamics study. Appl Phys A 128(49):1–13. https://doi.org/10.1007/s00339-021-05194-1

    Article  CAS  Google Scholar 

  6. Gerber IC, Serp P (2020) A theory/experience description of support effects in carbon-supported catalysts. Chem Rev 120(2):1250–1349. https://doi.org/10.1021/acs.chemrev.9b00209

    Article  CAS  Google Scholar 

  7. Psofogiannakis GM, Froudakis GE (2011) Fundamental studies and perceptions on the spillover mechanism for hydrogen storage. Chem Commun 47(28):7933–7943. https://doi.org/10.1039/C1CC11389E

    Article  CAS  Google Scholar 

  8. Juarez-Mosqueda R, Mavrandonakis A, Kuc AB, Pettersson LGM, Heine T (2015) Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes. Front Chem 3:2. https://doi.org/10.3389/fchem.2015.00002

    Article  CAS  Google Scholar 

  9. Psofogiannakis GM, Froudakis GE (2009) DFT study of hydrogen storage by spillover on graphite with oxygen surface groups. J Am Chem Soc 131(42):15133–15135. https://doi.org/10.1021/ja906159p

    Article  CAS  Google Scholar 

  10. Blanco-Rey M, Juaristi JI, Alducin M, López MJ, Alonso JA (2016) Is spillover relevant for hydrogen adsorption and storage in porous carbons doped with palladium nanoparticles? J Phys Chem C 120(31):17357–17364. https://doi.org/10.1021/acs.jpcc.6b04006

    Article  CAS  Google Scholar 

  11. D’Anna V, Duca D, Ferrante F, Manna GL (2009) DFT studies on catalytic properties of isolated and carbon nanotube supported Pd\(_9\) cluster-1: adsorption, fragmentation and diffusion of hydrogen. Phys Chem Chem Phys 11(20):4077–4083. https://doi.org/10.1039/B820707K

    Article  Google Scholar 

  12. Alonso JA, López MJ (2018) Handbook of materials modeling: applications: current and emerging materials. Springer, New York

    Google Scholar 

  13. Rangel E, Sansores E (2014) Theoretical study of hydrogen adsorption on nitrogen doped graphene decorated with palladium clusters. Int J Hydrogen Energy 39(12):6558–6566. https://doi.org/10.1016/j.ijhydene.2014.02.062

    Article  CAS  Google Scholar 

  14. Ma L, Zhang J-M, Xu K-W (2014) Hydrogen storage on nitrogen induced defects in palladium-decorated graphene: a first- principles study. Appl Surf Sci 292:921–927. https://doi.org/10.1016/j.apsusc.2013.12.080

    Article  CAS  Google Scholar 

  15. Ma L, Zhang J-M, Xu K-W, Ji V (2015) Hydrogen adsorption and storage on palladium-decorated graphene with boron dopants and vacancy defects: A first-principles study. Phys E Low Dimens Syst Nanostruct 66:40–47. https://doi.org/10.1016/j.physe.2014.09.022

    Article  CAS  Google Scholar 

  16. Faye O, Szpunar JA, Szpunar B, Beye AC (2017) Hydrogen adsorption and storage on palladium-functionalized graphene with NH-dopant: a first principles calculation. Appl Surf Sci 392:362–374. https://doi.org/10.1016/j.apsusc.2016.09.032

    Article  CAS  Google Scholar 

  17. Ramos-Castillo CM, Reveles JU, Zope RR, de Coss R (2015) Palladium clusters supported on graphene monovacancies for hydrogen storage. J Phys Chem C 119(15):8402–8409. https://doi.org/10.1021/acs.jpcc.5b02358

    Article  CAS  Google Scholar 

  18. Zhou Q, Wang C, Fu Z, Yuan L et al (2015) Hydrogen adsorption on palladium anchored defected graphene with B-doping: a theoretical study. Int J Hydrogen Energy 40(6):2473–2483. https://doi.org/10.1016/j.ijhydene.2014.12.071

    Article  CAS  Google Scholar 

  19. Pašti IA, Jovanović A, Dobrota AS, Mentus SV et al (2018) Atomic adsorption on graphene with a single vacancy: systematic DFT study through the periodic table of elements. Phys Chem Chem Phys 20(2):858–865. https://doi.org/10.1039/C7CP07542A

    Article  Google Scholar 

  20. Arrigo R, Schuster ME, Xie Z, Yi Y et al (2015) Nature of the N–Pd Interaction in Nitrogen–Doped carbon nanotube catalysts. ACS Catal 5(5):2740–2753. https://doi.org/10.1021/acscatal.5b00094

    Article  CAS  Google Scholar 

  21. Yumura T, Kimura K, Kobayashi H, Tanaka R et al (2009) The use of nanometer-sized hydrographene species for support material for fuel cell electrode catalysts: a theoretical proposal. Phys Chem Chem Phys 11(37):8275–8284. https://doi.org/10.1039/B905866D

    Article  CAS  Google Scholar 

  22. Prins R (2012) Hydrogen spillover. Facts and fiction. Chem Rev 112(5):2714–2738. https://doi.org/10.1021/cr200346z

    Article  CAS  Google Scholar 

  23. Conner WC, Falconer JL (1995) Spillover in heterogeneous catalysis. Chem Rev 95(3):759–788. https://doi.org/10.1021/cr00035a014

    Article  CAS  Google Scholar 

  24. Medenbach L, Köwitsch N, Armbrüster M et al (2018) Sulfur Spillover on Carbon Materials and Possible Impacts on Metal–Sulfur Batteries. Angew Chem Int Ed 57(41):13666–13670. https://doi.org/10.1002/anie.201807295

    Article  CAS  Google Scholar 

  25. Psofogiannakis GM, Froudakis GE (2009) DFT study of the hydrogen spillover mechanism on Pt-doped graphite. J Phys Chem C 113(33):14908–14915. https://doi.org/10.1021/jp902987s

    Article  CAS  Google Scholar 

  26. Wu HY, Fan X, Kuo JL, Deng WQ (2011) DFT study of hydrogen storage by spillover on graphene with boron substitution. J Phys Chem C 115(18):9241–9249. https://doi.org/10.1021/jp200038b

    Article  CAS  Google Scholar 

  27. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561. https://doi.org/10.1103/physrevb.47.558

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(1):11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  29. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  30. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  32. Deng D, Pan X, Yu L, Cui Y et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188–1193. https://doi.org/10.1021/cm102666r

    Article  CAS  Google Scholar 

  33. Parambhath VB, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28(20):7826–7833. https://doi.org/10.1021/la301232r

    Article  CAS  Google Scholar 

  34. Cardozo-Mata VA, Pescado-Rojas JA, Hernández-Hernández A, Hernández-Hernández LA et al (2020) Chemical interaction between nitrogen-doped graphene defects and a copper (1 1 1) surface: effects on water molecule adsorption. Appl Surf Sci 502(144149):1–8. https://doi.org/10.1016/j.apsusc.2019.144149

    Article  CAS  Google Scholar 

  35. Kokalj A (1999) XCrySDen-a new program for displaying crystalline structures and electron densities. J Mol Graph Model 17:176–179. https://doi.org/10.1016/S1093-3263(99)00028-5

    Article  CAS  Google Scholar 

  36. Cabria I, López MJ, Fraile S, Alonso JA (2012) Adsorption and dissociation of molecular hydrogen on palladium clusters supported on graphene. J Phys Chem C 116:21179–21189. https://doi.org/10.1021/jp305635w

    Article  CAS  Google Scholar 

  37. Javan MB, Shirdel-Havar AH, Soltani A, Pourarian F (2016) Adsorption and dissociation of H\(_{2}\) on Pd doped graphene-like SiC sheet. Int J Hydrogen Energy 41:22886–22898. https://doi.org/10.1016/j.ijhydene.2016.09.081

    Article  CAS  Google Scholar 

  38. Vallejo E, López-Pérez PA (2022) Strong chemical adsorption of CO\(_2\) and N\(_2\) on a five-vacancy graphene surface. Solid State Commun. https://doi.org/10.1016/j.ssc.2022.114934

    Article  Google Scholar 

  39. Zhao Y, Kim YH, Dillon AC, Heben MJ, Zhang SB (2005) Hydrogen storage in novel organometallic buckyballs. Phys Rev Lett 94(15):155504. https://doi.org/10.1103/physrevlett.94.155504

    Article  Google Scholar 

  40. Song N, Wang Y, Zheng Y, Zhang J et al (2015) New template for Li and Ca decoration and hydrogen adsorption on graphene-like SiC: a first-principles study. Comput Mater Sci 99:150–155. https://doi.org/10.1016/j.commatsci.2014.12.016

    Article  CAS  Google Scholar 

  41. Anderson RM, Zhang L, Loussaert JA, Frenkel AI, Henkelman G, Crooks RM (2013) An experimental and theoretical investigation of the inversion of Pd@Pt core@shell dendrimer-encapsulated nanoparticles. ACS Nano 7(10):9345–9353. https://doi.org/10.1021/nn4040348

    Article  CAS  Google Scholar 

  42. Karim W, Spreafico C, Kleibert A, Gobrecht J et al (2017) Catalyst support effects on hydrogen spillover. Nature 541:68–71. https://doi.org/10.1038/nature20782

    Article  CAS  Google Scholar 

  43. Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. J Am Chem Soc 130(6):1818–1819. https://doi.org/10.1021/ja078126k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Vallejo.

Ethics declarations

Competing interests

Author declares non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1066 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallejo, E. An hydrogen adsorption study on graphene-based surfaces with core–shell type catalysts. Carbon Lett. 33, 823–832 (2023). https://doi.org/10.1007/s42823-023-00463-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00463-w

Keywords

Navigation